
Toxicity Reduction Program for the City of Columbus Jackson Pike Wastewater Treatment Plant: A Success Story

> By Gary Hickman

Sewer/Watershed Tributary to Jackson Pike WWTP

4PF00000*JD

September 1993 – OEPA issues new NPDES Permit requiring Whole Effluent Toxicity Monitoring beginning December 1993.

Testing frequency:

1/6 months (semi annual)

Test organisms:

- Ceriodaphnia dubia (water fleas)
- Pimephales promelas (fathead minnows)

Toxicity Testing Requirements

- Reference: <u>Reporting and Testing</u> <u>Guidance for Biomonitoring Required by</u> <u>Ohio Environmental Protection Agency</u> (1991) and July 1998 –Revision 1
- Requires chronic toxicity testing as specified in section 2.
- Acute toxicity endpoints as described in section 2.H shall be derived from chronic tests.

Toxicity Endpoints

Acute

- Mortality 48 hours Ceriodaphnia dubia

- Mortality 96 hours Pimephales promelas
- Chronic
 - Survival over 7 day test (both species)
 - Fish Growth (dry weight after test period)
 - Reproduction Ceriodaphnia dubia (total # of offspring – 3 broods)

*we'll revisit this slide again.

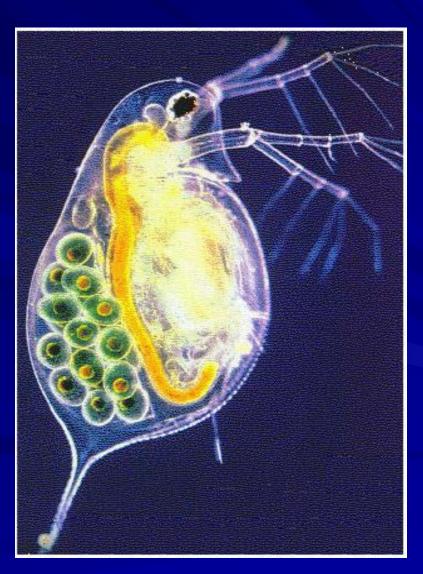
Definition of Terms

- LC 50 = Lethal Concentration in which 50% of the test organisms are dead.
- EC 50 = Effected Concentration in which 50% of the test organisms are either impaired or dead.
- NOEC = No Observable Effect Concentration
- LOEC = Lowest Observable Effect Concentration
- IC₂₅ = Inhibition Concentration: A point estimate of the toxicant concentration that would cause a given percent reduction (25%) in a non-lethal biological measurement of the test organisms, such as reproduction or growth

Toxicity Calculations

Toxicity Units (TU) = (100% / %Effluent concentration of toxic endpoint)

Acute: TUa = 100/LC50 or 100/EC50


Chronic: TUc = 100/sq. rt. of (NOEC x LOEC) or 100/IC₂₅ All TU cannot be mathematically less than 1

Testing Procedures

Ceriodaphnia dubia (water fleas)

- 10 replicate samples each containing 1 neonate daphnia.
- Typical dilution series 6.25%, 12.5%, 25%, 50%, and 100% effluent
- Upstream sample is used as the diluent and control water (unless toxic)
- Moderately Hard Reconstituted Water is used as the (alternative) test control
- Observing survival and reproduction each of the 7 days
- Test Duration 7 days (only count first 3 broods).

Ceriodaphnia dubia

Ceriodaphnia Dubia Cultures

Testing Procedures

Pimephales promelas (fathead minnows)

- 3 replicates of 10 test organisms per dilution series
- Typical dilution series 6.25%, 12.5%, 25%, 50%, and 100% effluent
- Upstream sample is used as the diluent and test control water (unless toxic)
- Moderately Hard Reconstituted Water is used as the (alternative) test control

Looking for survival and growth

Test Duration 7 days

Pimephales promelas

Breeding Tank

Common Test Protocols

Age of test organisms <24 hours old

 Neonates age within 6 hrs of one another.*

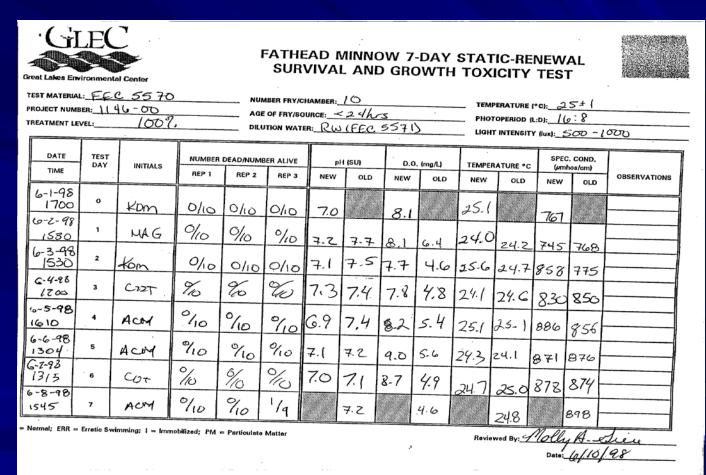
 Multiple lineages of test organisms required*
 Light, photoperiod and temperature standardized

- Minimum Dissolved Oxygen Concentration 4.0 mg/l
- Feeding schedule standardized

Testing Observations and Records

Routine Chemical and Physical Determinations

- DO, Temperature pH measurements at the beginning and end of each 24 hour period in at least one vessel for each test concentration and control
- Temperature and pH are measured at the end of each 24 hour period
- Temperature is measured continuously or in at least two locations and across a sufficient number of test vessels at the end of the 24 hour period to determine variation in temperature in the environmental chamber
- pH is measured in the effluent sample daily
- Conductivity, alkalinity and hardness are measured in each new sample; 100% effluent, receiving water, and control water
- All measurements are recorded on the data sheet.


Testing Observations and Records

- Routine Biological Observations
 - Number of live fish larvae each day
 - Number of live adult Daphnia (first 3-4 days)
 - The number of off-spring per adult daphnia (last 3-4 days -3 broods)
 - Test duration 7 days
 - All observations are recorded on the data sheets.

Example of data Summary Sheet Daphnia

	N Center		lack	sont	Pike		DA	PHNI	D ST	ATIC	REN	EWAL	CHRON		XICITY			2	Manuar	
<u></u>	H.4.6 IE:/// DAY: 0	98 J	14451		FROM:	10 1515	2/ UP 5/: 2AC	CHAMBER 20 M 15		3 ACM		NTENSITY (Jux	þ str. R.W # <u>500-11</u> 1615 Korr	000		OPERIOD (L:D	4 Z 7 3(): <u>(6:8</u> E (°C): <u>25</u> 6 <u>1230</u> C	= 1	1630400	
Concentration	0 1 2	+ + +	2 + +	+	+ + 4	Test 5 4	Chamber 6 + +	7 	8 + +	+	10 + +	New 7.9 7.8 7.9 7.9	014 014 8.1 9.0	New 7.6 2.8	DO Old 6.3	<u>Ter</u> New 2 4.9 24.1	old 24.5	New 175	i 74	
Control.	3 4 5 5 7	424 426 42 42	1110	+e4 62	+2 +24 +26 +26	+e +e +e +e 3	12 124 126 12 12 12	424 424 428 42	+e +e3 +<5 +e11	424	4e 4e 4e 4e 4e9	7.7	3.0 7.8 8.0 7.7 7.9	8.4 8.0 8.0 8.2 7.1	7.8 8.0 7.7 8.2 8.1	24.7 24.1 25.1 24.7 24.7	24.9 24.8 24.8 24.8 24.4 24.6	175 190 171 183 69	165 166 173 169 169	
RW Gration		+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ +e +e +e/o +e/o	+ + +e +e +e +e +e +e +e +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	7.9 8.0 77.8 7.5 7.8 7.7 7.8 7.7 7.6	8.4 8.5 8.3 8.3 8.3 8.3 8.3 8.3 8.3	7.3 7.8 8.8 7.5 8.4 8.4	8.1 8.8 8.9.4 8.2 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	29.0 24.7 24.3 24.9 24.9 25.3	24.8 24.5 24.9 24.8 24.8 24.8 24.9	510 505 480 549 557 565	497 497 497 496 52/ 530	
12.5%.		+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	++++++++++++++++++++++++++++++++++++++	424 424 428 42/5		tezz : tezz :	+ + + + + + + + + + + + + + + + + + +	*23	425 425 4211 428	+e2 + + + + + + + + + + + + + + + + + +	7.8 7.9 7.7 7.6 7.8 7.8 7.7 7.8 7.7	8.4 8.4 8.4 8.3 8.5 8.3 8.3 8.2 8.3	7.5 7.9 7 9 88 7.5 84 9.0	8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.1 8.1	24.7 24.0 24.8 24.3 249 25.4 24.9	24.6 24.8 24.5 24.9 24.9 24.8 24.8 24.8 24.8 24.4 24.6	568 557 555 590 593 627 614	479 526 541 551 540 588 588 580 560	
Key: + = live, - =	deed, e = ,	eggs pres	ent 										the second se	wed by:	8.7 Colly A.	Their	24.8	_Dete: (e//C	592	
<u> </u>		-	5		1			1	7.		1		1				. 17		77	

Example Data Summary Sheet Minnows

Data Summary Sheet - Daphnia

EPA Permit No. 4PF00000*JD

Page 5 of 8

CHRONIC TOXICITY TEST RESULTS FOR Ceriodaphnia dubia

Test Solutions			mulative H tive Perce Te					Number of Young Produced*		
	1	2	3	4	5	6	7	Total	Mean	
Primary Control/ Dilution Water (RW)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	443	44.3	
Secondary Control (DMW)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	0 (0)	228	22.8	
12% Effluent	10 (10)	10 (10)	10 (10)	10 (10)	10 (10)	10 (10)	10 (10)	324	32.4*	
25% Effluent	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	285	28.5*	
50% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	0	0.0	
75% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	0	0.0	
100% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	o	0.0	
LC ₅₀ Values:	34.7	34.7	34.7	34.7	34.7	34.7	34.7	Calculated TUc Value for Survival: 2.8		
LL 95% Confidence Limits	NA	NA	NA	NA	NA	NA	NA			
UL	NA	NA	NA	NA	NA	NA	NA			
EC _{so} Values:	34.7	34.7	34.7	34.7	34.7	34.7	34.7			
LL	NA	NA	NA	NA	NA	NA	NA	Calculated TU Reproduction:		
95% Confidence Limits UL	NA	NA	NA	NA	NA	NA	NA			
7-Day NOEC for Mortality: 25	5%	7-Day N	OEC for F	eproduct	ion: <12	2%		Method(s) Use	d to Determine	
7-Day LOEC for Mortality: 50	%	7-Day L	OEC for R	eproduct	on: 12%			Values: Mortality - F	isher's	
Chronic Value for Mortality: 3	5.5%	Chronic	Value for		Mortality - Fisher's Reproduction - Dunnett's					

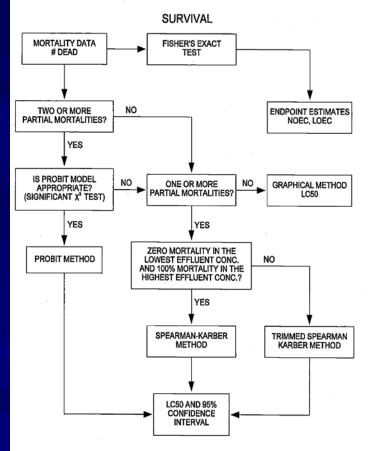
Data Summary Sheet - Minnows

EPA Permit No. 4PF00000*JD

TABLES

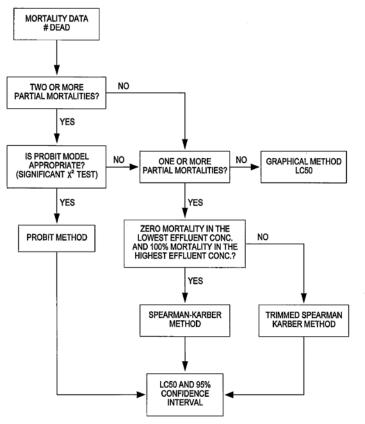
Page 7 of 8

CHRONIC TOXICITY TEST RESULTS FOR FATHEAD MINNOWS (Pimephales promelas)

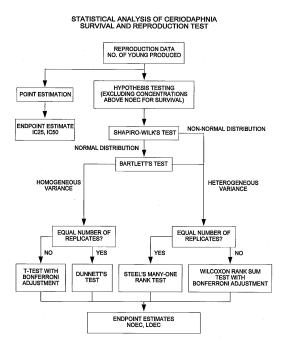

				ative Per		Mortali ersely A				Weight per initiated)*	
Test Solutions		1	2	3	4	5	6	7	Total	Mean	
Primary Control/ Dilution Water (RW)		0 (0)	0 (0)	0 (3.3)	16.7 (16.7)	33.3 (33.3)	36.7 (36.7)	40 ^b	8.92	0.2973	
Secondary Control (MH	,	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	13.64	0.4547	
12% Effluent		0 (0)	0 (0)	0 (0)	3.3 (3.3)	13.3 (13.3)	20 (20)	20 (20)	10.54 0.3513		
25% Effluent		0	0 (0)	3.3 (3.3)	10 (10)	23.3 (23.3)	23.3 (23.3)	23.3 (23.3)	10.92	0.3640	
50% Effluent		0 (0)	0 (0)	10 (10)	23.3 (23.3)	43.3 (43.3)	60 (60)	63.3 (63.3)	5.02	0.1673	
75% Effluent		0 (0)	0 (0)	0 (0)	10 (10)	33.3 (33.3)	40 (40)	43.3 (43.3)	7.91	0.2637	
100% Effluent		0 _(0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3.3 (3.3)	13.51	0.4503	
LC _{sa} Values:		>100	>100	>100	>100	24.3	21.9	22.2			
	LL	NA	NA	NA	NA	5.2	10.2	12.6	Calculated TUc Value for Survival: <1.0		
95% Confidence Limits UL		NA	NA	NA	NA	114.0	47.2	39.0			
EC _{so} Values:		>100	>100	> 100	> 100	24.3	21.9	22.2			
050 0-01	ц	NA	NA	NA	NA	5.2	10.2	12.6	Calculated TUc Growth: <1.0	Value for	
95% Confidence Limits		NA	NA	NA	NA	114.0	47.2	39.0			
7-Day NOEC for Mortali	0%	7-Day]	NOEC fo	r Growth	: 100%			Method(s) Used	to Determine		
7-Day LOEC for Mortali	ty: >)	100%	7-Day 1	LOEC for	Growth:	>100%			Values: Mortality - t-te	st	
Chronic Value for Mortal	lity: >	100%	Chronic	value f	or Growt	h: >1009	%		Growth - t-test		

a - indicate significant differences from the primary control with an * (p < 0.05).

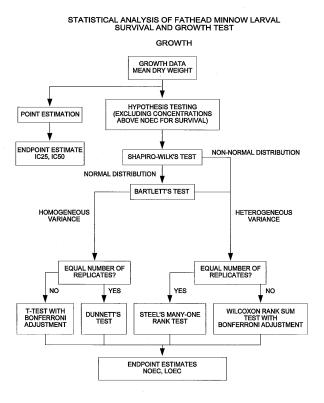
b - secondary (laboratory) control used for statistical analysis due to toxicity in primary (receiving water) control.


STATISTICAL ANALYSIS OF CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

. Flowchart for statistical analysis of the daphnid, Ceriodaphnia dubia, survival data.


STATISTICAL ANALYSIS OF FATHEAD MINNOW LARVAL SURVIVAL AND GROWTH TEST

SURVIVAL POINT ESTIMATION



Flowchart for statistical analysis of the fathead minnow, *Pimephales promelas*, larval survival data by point estimation.

Reproduction/Growth

Flowchart for the statistical analysis of the daphnid, Ceriodaphnia dubia, reproduction data.

Flowchart for statistical analysis of fathead minnow, Pimephales promelas, larval growth data.

۰.

List of possible interferences

- Contaminants in dilution water, glassware, sample hardware and testing equipment
- Improper effluent sampling and handling
- Pathogenic and/or predatory organisms in the dilution water and effluent may affect test organism survival and confound test results
- The amount and type of natural food and nutrients in the effluent or dilution water may confound test results

WET Tests

- Based on all of the above, you could be wondering is this even a viable test to do?
- Yes it is.
- Scientific method.
- Enormous efforts to eliminate variability and provide readily defensible data
- Improvements made as scientists gain experience and endeavor to reduce test variability:
 - age and lineage of test species
 - Adjusting Dilution series used for testing certain effluents: 20%, 40%, 80%, 100% e.g.

What Happened

- OEPA raised concerns about the previous 10 years WET results in 2003 discussions on NPDES permit renewal.
- The City accelerated screening tests using 100% effluent, upstream, and downstream to see if a chronic toxicity issue could be identified.
 - Definitive testing as needed, if persistent toxicity was identified.
- Try to persuade the OEPA that at worst there was an intermittent toxicity issue.
- NPDES Permit 4PF00000*KD issued in 2004 with WET Limits and a compliance schedule.
 - Maximum TUc value of 1.8 for both species,
 - Quarterly testing,
 - Annual average limit of 1.0 TUc

Test Results Reported

TABLE J	TABLE 1. Results of Whole Effluent Toxicity Testing Jackson Pike Wastewater Treatment Plant										
Date	Ceriodaphnia dubia TUc	Pimephales promelas TUc									
9-Dec-93	<1.0	<1.0									
9-Jun-94	<1.0	<1.0									
1-Dec-94	1.15	<1.0									
11-Jun-95	1.15	<1.0									
9-Dec-95	<1.0	<1.0									
3-Jun-96	2.8	<1.0									
7-Dec-96	>8.3	<1.0									
8-Jun-97	<1.0	<1.0									
7-Dec-97	1.6	5.8									
1-Jun-98	>8.3	<1.0									
6-Dec-98	1.2	>8.0									
13-Jun-99	<1.0	1.2									
5-Dec-99	<1.0	10.3									
11-Jun-00	<1.0	<1.0									
10-Dec-00	<1.0	<1.0									
3-Jun-01	<1.0	<1.0									
10-Dec-01	2.1	0									
3-Jun-02	1.1	<1.0									
2-Dec-02	1.1	<1.0									
1-Jun-03	<1.0	<1.0									
7-Dec-03	<1.0	<1.0									
25-Jan-04	< 1.0*	< 1.0*									
23-Feb-04	< 1.0*	< 1.0*									
21-Mar-04	< 1.0*	< 1.0*									
9-May-04	< 1.0*	< 1.0*									
13-Jun-04	< 1.0	< 1.0									
18-Jul-04	< 1.0*	< 1.0*									
22-Aug-04	< 1.0*	< 1.0*									
7-Nov-04	< 1.0	1.2									
12-Dec-04	< 1.0	<1.0									
6-Feb-05	< 1.0	< 1.0									
1-May-05	< 1.0	<1.0									
7-Aug-05	< 1.0	< 1.0									
11-Sep-05	< 1.0	< 1.0									
2-Oct-05	< 1.0	< 1.0									
6-Nov-05		< 1.0									
4-Dec-05	< 1.0	< 1.0									
8-Jan-06	<1.0	<1.0									
7-Feb-06		<1.0									
	* Screening only no toxicity de	tected at 100%									

Data Summary Sheet - Daphnia

EPA Permit No. 4PF00000*JD

Page 5 of 8

CHRONIC TOXICITY TEST RESULTS FOR Ceriodaphnia dubia

ТA	AB	LE	4

Test Solutions			mulative H tive Perce Te					Number of Yo	ing Produced*	
	1	2	3	4	5	6	7	Total	Mean	
Primary Control/ Dilution Water (RW)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	443	44.3	
Secondary Control (DMW)	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0(0)	0 (0)	228	22.8	
12% Effluent	10 (10)	10 (10)	10 (10)	10 (10)	10 (10)	10 (10)	10 (10)	324	32.4*	
25% Effluent	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	285	28.5*	
50% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	0	0.0	
75% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	0	0.0	
100% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	0	0.0	
LC ₅₀ Values:	34.7	34.7	34.7	34.7	34.7	34.7	34.7			
LL	NA	NA	NA	NA	NA	NA	NA	Calculated TUc Value for Survival: 2.8		
95% Confidence Limits UL	NA	NA	NA	NA	NA	NA	NA	Burvival, 2.0		
EC ₅₀ Values:	34.7	34.7	34.7	34.7	34.7	34.7	34.7			
LL	NA	NA	NA	NA	NA	NA	NA	Calculated TUc Reproduction:		
95% Confidence Limits UL	NA	NA	NA	NA	NA	NA	NA	-		
7-Day NOEC for Mortality: 2		Method(s) Used Values:	to Determine							
7-Day LOEC for Mortality: 50	7-Day LOEC for Mortality: 50% 7-Day LOEC for Reproduction: 12%									
Problem Provide the production: Providethe productin: Providethe productin:										
IC ₂₅ = 14.7%										
a - indicate significant differen	nces from	the primary	y control w	vith an *	p < 0.0	<u>ຈ</u> .				

Data Summary Sheet - Minnows

EPA Permit No. 4PF00000*JD

Page 7 of 8

CHRONIC TOXICITY TEST RESULTS FOR FATHEAD MINNOWS (Pimephales promelas)

TABLE 6

•				ative Per		Mortali ersely A			Dry Weight (per number initiated)*		
Test Solutions		1	2	3	4	5	6	7	Total	Mean	
Primary Control/ Dilution Water (RW)		0 (0)	0 (0)	0 (3.3)	16.7 (16.7)	33.3 (33.3)	36.7 (36.7)	40 ^b	8.92	0.2973	
Secondary Control (MH		0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0	0 (0)	13.64	0.4547	
12% Effluent		0 (0)	0 (0)	0 (0)	3.3 (3.3)	13.3 (13.3)	20 (20)	20 (20)	10.54	0.3513	
25% Effluent		0 (0)	0 (0)	3.3 (3.3)	10 (10)	23.3 (23.3)	23.3 (23.3)	23.3 (23.3)	10.92	0.3640	
50% Effluent		0 (0)	0 (0)	10 (10)	23.3 (23.3)	43.3 (43.3)	60 (60)	63.3 (63.3)	5.02	0.1673	
75% Effluent		0 (0)	0 (0)	0 (0)	10 (10)	33.3 (33.3)	40 (40)	43.3 (43.3)	7.91	0.2637	
100% Effluent		0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3.3 (3.3)	13.51	0.4503	
LC ₅₀ Values:		>100	>100	>100	> 100	24.3	21.9	22.2	· · ·		
95% Confidence Limits	LL	NA	NA	NA	NA	5.2	10.2	12.6	Calculated TUc Value Survival: <1.0	Value for	
95% Confidence Limits	UL	NA	NA	NA	NA	114.0	47.2	39.0			
EC _{so} Values:		> 100	>100	> 100	> 100	24.3	21.9	22.2			
LL 95% Confidence Limits UL		NA	ŇA	NA	NA	5.2	10.2	12.6	Calculated TUc Value for Growth: <1.0		
		NA	NA	NA	NA	114.0	47.2	39.0			
7-Day NOEC for Mortali	0%	7-Day]	NOEC fo	r Growth	Method(s) Used to Determine						
7-Day LOEC for Mortalit	y: >1	100%	7-Day 1	LOEC for	r Growth	: >100%			Values: Mortality - t-te	est	
Chronic Value for Mortal	ity: >	100%	Chronie	c Value f	or Growt	h: >1009	%		Growth - t-test		

b - secondary (laboratory) control used for statistical analysis due to toxicity in primary (receiving water) control.

Toxicity Endpoints (I'm Back)

Acute

- Mortality at 48 hours for Ceriodaphnia dubia

- Mortality at 96 hours for Pimephales promelas
- Chronic
 - Survival over 7 day test (both species)
 - Fish Growth (dry weight after test period)
 - Reproduction Ceriodaphnia dubia (total # of offspring 3 broods)

Points to Ponder

- Do we even have Chronic Toxicity? Or is it more likely Intermittent Acute Toxicity
 - Does the observed toxic effect occur with test initiation
 - Or is it observed after a subsequent static renewal interval?
- Do we have Intermittent Chronic Toxicity?
 - Is it related to the time of year the test was done (winter vs. summer)
 - Was it related to plant construction activities or start up of new processes, chemical addition, etc.
- Intermittent Dilution Water Toxicity upstream control
- What if all three conditions occur

Data Summary Sheets

EPA Permit No. 4PF00000*JD

Page 5 of 8

EPA Permit No. 4PF00000*JD

Page 7 of 8

CHRONIC TOXICITY TEST RESULTS FOR FATHEAD MINNOWS (Pimephales promelas)

TABLE 6

Test Column			ative Per		Mortali ersely A				Weight er initiated)*		
Test Solutions	1	2 3		4	5	6	7	Total	Mean		
Primary Control/ Dilution Water (RW)	0 (0)	0 (0)	0 (3.3)	16.7 (16.7)	33.3 (33.3)	36.7 (36.7)	40 ^b (40)	8.92	0.2973		
Secondary Control (MH)	ő	0 (0)	0 (0)	0 (0)	0	0(0)	0 (0)	13.64	0.4547		
12% Effluent	0 (0)	o (0)	0	3.3 (3.3)	13.3 (13.3)	20 (20)	20 (20)	10.54	0.3513		
25% Effluent	ů	0 (0)	3.3 (3.3)	10 (10)	23.3 (23.3)	23.3 (23.3)	23.3 (23.3)	10.92	0.3640		
50% Effluent	o o	0 (0)	10 (10)	23.3 (23.3)	43.3 (43.3)	60 (60)	63.3 (63.3)	5.02	0.1673		
75% Effluent	0 (0)	0 (0)	0	10 (10)	33.3 (33.3)	40 (40)	43.3 (43.3)	7.91	0.2637		
100% Effluent	0 (0)	0 (0)	0 (0)	0 (0)	0	0 (0)	3.3 (3.3)	13.51	0.4503		
LC _{ss} Values:	> 100	>100	>100	>100	24.3	21.9	22.2	Calculated TUc Value for Survival: <1.0			
LL 95% Confidence Limits	NA	NA	NA	NA	5.2	10.2	12.6				
UL	NA	NA	NA	NA	114.0	47.2	39.0				
EC ₄₀ Values:	>100	>100	>100	>100	24.3	21.9	22.2	Columbra 1 TUL	V-1		
95% Confidence Limits	NA NA	NA NA	NA	NA	5.2	10.2	12.6	Calculated TUc Value for Growth: <1.0			
UL 7-Day NOEC for Mortality: 10		NA NOEC fo	NA r Growth	114.0	47.2	39.0	Method(s) Used to Determine				
7-Day LOEC for Mortality: >	7-Day	LOEC for	r Growth	Values: Mortality - t-test							
Chronic Value for Mortality:	> 100 %	Chronic Value for Growth: >100% Growth - t-test									

b - secondary (laboratory) control used for statistical analysis due to toxicity in primary (receiving water) control

CHRONIC TOXICITY TEST RESULTS FOR Ceriodaphnia dubia

TABLE 4

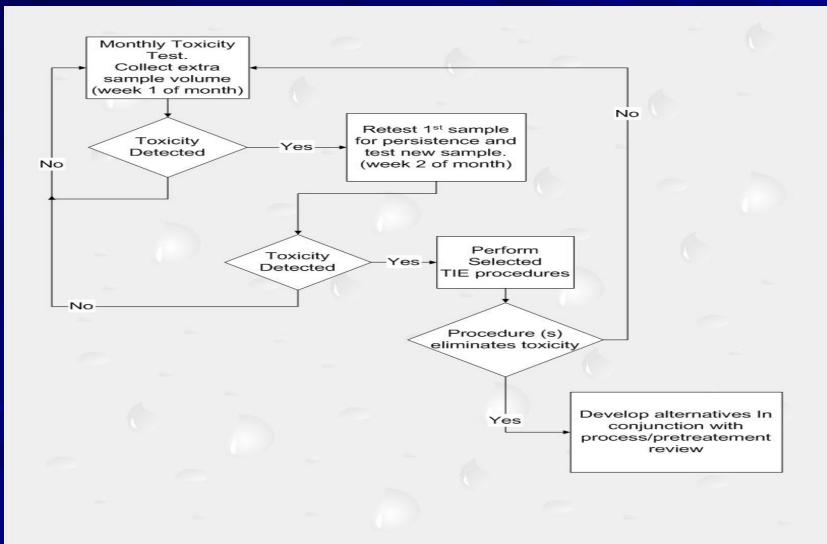
Primary Control/ Dilution Water (RW) Secondary Control (DMW) 12% Effluent	1 0 (0) 0 (0) 10 (10)	2 (0) 0 (0)	3 0 (0)	4	5	6	7	Total		
Dilution Water (RW) Secondary Control (DMW) 12% Effluent	0 0 (0) 10	0					7		Mean	
12% Effluent	(0) 10			(0)	0 (0)	0 (0)	0 (0)	443	44.3	
			0	0 (0)	0(0)	0 (0)	0 (0)	228	22.8	
		10 (10)	10 (10)	10 (10)	10 (10)	10 (10)	10 (10)	324	32.4*	
25% Effluent	0 (0)	0	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	285	28.5*	
50% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	0	0.0	
75% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	0	0.0	
100% Effluent	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100 (100)	100* (100)	0	0.0	
LC ₃₀ Values:	34.7	34.7	34.7	34.7	34.7	34.7	34.7	-		
LL 95% Confidence Limits	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	Calculated TUc Survival: 2.8	Value for	
UL EC ₄₀ Values:	34.7	34.7	34.7	34.7	34.7	34.7	34.7			
EC a values:	34.7 NA	34.7 NA	34.7 NA	NA	34.7 NA	34.7 NA	34.7 NA	Calculated TUc Value for		
95% Confidence Limits UL	NA	NA	NA	NA	NA	NA	NA	Reproduction: >8.3		
7-Day NOEC for Mortality: 255	%	7-Day N	OEC for H	Reproduct	ion: <12	%		Method(s) Used	to Determin	
7-Day LOEC for Mortality: 509	%	7-Day L	OEC for F	leproduct	ion: 12%			Values: Mortality - Fis	sher's	
Chronic Value for Mortality: 35.5% Chronic Value for Reprod.: <12% Reproduction - D										

Compliance Procedure

What was required by the Permit

- Initiate a Toxicity Reduction Evaluation (TRE) by December of 2005.
- Submit a General Plan for "Toxicity" Reduction in March 2006.
- Execute the General Plan.
- Submit Annual Reports (September 2006, 2007, 2008, 2009)
- Submit a Specific Plan for "Toxicity" reduction due January 2008.
- Full Compliance by November 2009

TRE - What We did


- Secured the services of a consultant to help us through the process.
- The TRE is a two stage process
- Toxicity Identification Evaluation (TIE) is a series of tests (on an effluent exhibiting toxic characteristics) to determine what is the physical, chemical, or biological property of the effluent causing toxicity.
- TRE is an engineering evaluation of plant processes to provide the treatment solution(s) necessary to remove the cause identified in the TIE.

General Plan Activities

- Review of Sampling and QA/QC protocols
- WET Laboratory review and selection
- Engineering review of Plant process to identify possible plant toxicity sources
 - Chemicals used in treatment processes
 - Recycle streams
 - Stormwater controls

Review of Significant Industrial Users to Identify possible external sources of toxicity

TIE/TRE Process

What is Required for to Conduct a TIE?

Persistent Effluent toxicity as a result of physical, chemical or biological constituents in the effluent.

TIE – Two Tier Approach

Tier 1 – Approach involves manipulation of effluent samples:

- Filtration
- Aeration
- Use of additives to chelate or reduce toxicants (EDTA)
- Minor pH adjustments
- Phase Separation techniques with C₁₈ solid phase extraction (SPE) resin to remove possible organics
- Samples manipulated at the initial pH of the effluent (pH_i)

TIE – Two Tier Approach (Cont.)

Tier 2 – Consists of performing the same manipulation steps on the effluent after adjusting samples to pH 3 and pH 10.

 After manipulation completion readjust pH to effluent pH_i

Compare the results with an unaltered effluent sample.

Results of Sampling

TABLE	2. Results of Whole Efflue ackson Pike Wastewater Tre	nt Toxicity Testing eatment Plant
Date	Ceriodaphnia dubia TUc	Pimephales promelas TUc
Sept-06	< 1.0	< 1.0
Oct-06	< 1.0	< 1.0
Nov-06	< 1.0	< 1.0
Dec-06	< 1.0	< 1.0
Jan-07	< 1.0	< 1.0
Feb-07	< 1.0	< 1.0
Mar-07	< 1.0	< 1.0
Apr-07	< 1.0	< 1.0
May-07	< 1.0	< 1.0
June-07	< 1.0	< 1.0
09-July-07	1.2	< 1.0
09-July-07		
Retest 7/17		
C. dubia	< 1.0	NA
17-Jul-07	< 1.0	NA
Aug-07	< 1.0	< 1.0
Sep-07	< 1.0	< 1.0
Oct-07	< 1.0	< 1.0
04-Nov-07	< 1.0	< 1.0
25-Nov-07	< 1.0	< 1.0
Jan-08	< 1.0	< 1.0
Feb-08	< 1.0	< 1.0
Mar-08	< 1.0	< 1.0
Apr-08	< 1.0	< 1.0
May-08	< 1.0	< 1.0
Aug-08	< 1.0	< 1.0
Nov-08	< 1.0	< 1.0
Feb-09	< 1.0	< 1.0
May-09	< 1.0	< 1.0
Aug-09	< 1.0	< 1.0
Nov-10	< 1.0	< 1.0

Specific Plan

- Plant improvements required to attain compliance Report due 01/01/2008
 - Demonstration that "Toxicity" meets limits
 - Plant modifications or process changes identified.
 - Pre-treatment Program changes required.
 - Demonstration that toxicity is not persistent, reproducible or identifiable.
 - Complete a PTI if required.
 - Schedule for construction.

2008 - 2010

- Continued monitoring Effluent using definitive testing on a quarterly basis as outlined in the permit.
- Formally requested removal of the limit from the permit Part II, Paragraph Z.
- Met with Ohio EPA to discuss permit renewal.
- Successfully had WET limits removed from NPDES permit 4PF00000*OD (August 2010) and sampling frequency reduced to semiannual.

Lessons Learned

- Process changes to accommodate various construction related activities can significantly impact stable operations, which in turn may influence the WET. (Ammonia – bleed through, start up shutdown of Sodium Hypochlorite/Bisulfite chemical system, change in polymer, salt on floors, etc.)
- Dilution Series may need to be adjusted to bracket the higher end of the scale: 20%, 40%, 60%, 80%, 100% to get more definitive results.
- Upstream Toxicity or the additive effects thereof, when combined with effluent, may need to be identified.
 - Combined Sewer discharges and other point and non-point source discharges may influence results
- Use of Moderately Hard Re-constituted Water for dilution water may be required if persistent upstream toxicity exists.

Lessons Learned

Data Interpretation

 The TU number should not be a stand alone value devoid of the context in which it was generated.

Acknowledgements

Dan Markowitz, PhD. MPI/Arcadis
 Chris Tarr, GLEC
 Tanna Rhoads, Chemist II JPWWTP