

2013 Collection Systems Specialty Workshop May 9, 2013

Low Velocities in Force Mains: Impacts and Solutions

Sean O'Rourke, P.E. Bo Copeland, P.E.

HAZEN AND SAWYER Environmental Engineers & Scientists

Low Velocities in Force Mains (FMs): Presentation Outline

- Overview
- Complications and consequences
- Contributing factors
- Standards and engineering practice
- Design and O&M solutions
- Case studies
- Conclusion
- Questions

Overview: Low Velocity in Force Mains

Primary Concerns:

- 1. Solids deposition
- 2. Gas pocket accumulation (incl. air binding)
- 3. Grease / Biofilm accumulation

Which can lead to:

- Pipe deterioration
- Reduced asset life
- Increased life-cycle cost

Overview: Solid-liquid Horizontal Flow Behavior

Behavior is dependent on fluid properties, velocity, particle sizes, density, etc.

 Homogeneous suspension: Particles are uniformly suspended and move at the same velocity as the fluid.

• Heterogeneous suspension: A concentration gradient exists within the pipe as coarse particles move slower and begin to settle.

Overview: Solid-liquid Horizontal Flow Behavior

Heterogeneous flow can lead to solids deposition ("saltation regime")

Particles travel in discontinuous movements or by sliding/rolling along the bottom, if at all.

Overview: Solid-liquid Horizontal Flow Behavior

A sliding bed can cause abrasion of the pipe invert. Stationary beds reduce available pipe crosssectional area.

Goal: Operate at adequate velocity to achieve heterogeneous suspension without solids deposition

Overview: Gas pocket accumulation (air binding)

Sewer gas can come out of solution within a FM and accumulate causing:

- 1. Reduction in pipe cross-sectional area (increases pumping head)
- 2. Pipe corrosion from H₂S attack

Additional Complications from Low Velocity in Force Mains

In addition to solids deposition and accumulation of gas pockets, other complications may include:

- Grease / biofilm accumulation
- Microbial activity, H₂S, odorous and corrosive conditions

Common Consequences Associated with Low Velocity in FMs

Potential consequences:

- Increased system head losses due to reduced crosssectional area (smaller ID) and higher roughness factor
- Increased operating pressure (pump seals, piping, valves, and other appurtenances)
- Reduced pumping capacity

Common Consequences Associated with Low Velocity in FMs

Potential consequences (cont.):

- Increased odor and corrosion within the FM and downstream sewers and MHs
- Pipe abrasion (sliding bed or H2S attack)
- Increased O&M costs (e.g. electrical use, chemical use, cleaning costs, etc.)

Reduced asset life

Additional Considerations (designers)

Hazen-William's equation is only valid in "transition zone" not at velocity or diameter extremes

(Moody chart)

Contributing Factors

Circumstances that may lead to low velocity:

- Small PSs with 4" FMs (80 gpm = ~2 fps)
- Existing FMs reused for smaller PSs
- Manifolded FMs serving multiple pump stations)
- Systems with no / low initial contributing flow (incl. phased developments)
- High wet-weather / average flow ratio
- High TDH (long FM or static head)

Contributing Factors

Circumstances that may lead to low velocity:

- PS down-sizing or other system changes
- Wear of pump components (impellers, volutes, etc.)
- Accumulation of gas pockets (air binding) in FM
- Increased system headlosses:
 - Grease accumulation
 - Biofilm growth resulting from use of ammonium calcium nitrate or certain other chemicals for odor and corrosion control in a long FM

• FM relocations (e.g. add length and fittings)

Standards and Engineering Practice for Force Main Velocity

What Velocity is not "Low Velocity"?

Standards and Engineering Practice for Force Main Velocity

Ten States Standards (2004 ed.)¹:

"At design pumping rates, a cleansing velocity of at least <u>2.0 ft/s</u> should be maintained."

Pumping Station Design, (3rd ed.)³:

- "The lowest design velocity ... for raw wastewater is <u>2 ft/s</u> to keep grit moving, and a peak daily velocity of <u>3.5 ft/s</u> is desirable to resuspend settled solids."
- "Velocities as low as <u>1.6 ft/s</u> are tolerable with two daily flushes."
- "If velocities are <<u>2.5 ft/s</u>, a daily flush at <u>4.0 ft/s</u> long enough to sweep out the entire volume ... is desirable."

Standards and Engineering Practice for Force Main Velocity

Piping Handbook (7th ed.)²:

"It is common practice to design sanitary sewers ... to provide for velocities of <u>2 ft/s</u> Storm sewers are commonly designed for a minimum full-flow velocity of <u>3 ft/s</u> in order to resuspend sediment"

USEPA, "Wastewater Technology Fact Sheet: Sewers, Force Main" (2000)⁴:

"Force mains ... are typically designed for velocities between <u>2 to 8 ft/s</u>."

Standards and Engineering Practice for Force Main Velocity

Sanitary and Industrial Wastewater Collection—Pumping Stations and Force Mains, Department of the Army and Air Force (1985)⁵:

"Velocity criteria for force mains are based on the fact that suspended organic solids do not settle out at a velocity $\geq =2.0$ fps. Solids will settle at velocities ≤ 1.0 fps However, a velocity of 2.5 to 3.5 fps is generally adequate to resuspend and flush the solids from the line."

"[For large pumping stations] it will generally be sufficient to design for velocities of <u>0.5 up to 7.0 or 8.0 fps</u>."

Standards and Engineering Practice for Force Main Velocity

Although general consensus is >~2.0 ft/s to prevent deposition and ~3.5 ft/s to resuspend solids, application varies between designers and projects

- Adjustable-speed pumps
- Multiple-pump systems
- Shared / manifolded force mains
- Frequency of cleansing / scouring

Standards and Engineering Practice for Force Main Velocity

Table B-9, *Pumping Station Design*, 3rd ed.³:

Velocities Required to Scour Air Pockets from Pipelines.

Velocities, ft/s Slope					Pipe diameter,
1.4	1.4	1.6	1.7	1.8	1
1.9	2.0	2.2	2.4	2.5	2
2.3	2.5	2.7	2.9	3.1	3
2.7	2.9	3.1	3.4	3.5	
3.3	3.5	3.8	4.2	4.3	6
3.8	4.1	4.4	4.8	5.0	8
4.3	4.6	4.9	5.4	5.6	10
4.7	- 5.0	5.4	5.9	6.1	12
5.1	5.4	5.8	6.3	6.6	14
5.2	5.6	6.0	6.6	6.8	15
5.4	5.8	6.2	6.8	7.0	16
5.7	6.1	6.6	7.2	7.5	18

Design Engineering Solutions:

- Proper hydraulic evaluation, incl. maintaining minimum velocity >=2 ft/s whenever possible
- Evaluation of alternate alignments and profiles
- Consideration of parallel pipes (if wide flow range)
- Proper air valve selection—incl. avoiding air valves wherever feasible by avoiding intermediate high points and/or achieving air-scouring velocity
- Proper odor / corrosion control measures

Design Engineering Solutions:

- Proper pump and impeller selection
- Evaluation of constant- vs. adjustable-speed pumps
- Appropriate pump controls—e.g. auto-flushing
- Consideration of screening and grit removal
 - Reducing amount of solids—esp. grit and other large particles—can reduce the required cleansing velocity
- Consideration of flushing and/or pig-launching and retrieval connections

Operation and Maintenance (O&M) Solutions

- Regular flushing at higher velocity (auto or manual)
- Maintain pumps to preserve original pumping capacity—debris-free, proper clearances, no blowby
- Refurbish or replace impellers as needed to maintain design (or higher) pumping capacity
- Change pump controls

Operation and Maintenance (O&M) Solutions

- Chemical "shocking" to kill biofilm growth
- Mechanical Pipe Cleaning (e.g. pigging)
- Odor / corrosion control chemical

Operation and Maintenance (O&M) Solutions

ICE PIGGING by Utility Service Group – Atlanta (currently up to 24-inch diameter)

http://www.utilityservice.com/icepigging.html

Ice slurry with semi-solid properties

Before ICE PIGGING

After ICE PIGGING

ICE PIGGING process samples from start to finish

Case Study 1 – Bromley & Taylorsport (Manifolded Force Mains)

Case Study 1 – Bromley & Taylorsport (Manifolded Force Mains)

Case Study 2 – Gunpowder & Burlington (Manifolded Force Main)

Case Study 2 – Gunpowder & Burlington Force Main

Original Flow Direction

Case Study 2 – Gunpowder & Burlington Force Main

Darker flow due to flow reversal in FM resuspending sedimentation

Conclusion / Review

Remember:

- Appropriate FM velocities (~2 8 ft/s)
- Reasons why low velocities are undesirable
- Potential complications and consequences
- Contributing factors to low velocities
- Design and O&M solutions

Proper understanding allows:

- Engineers to make better design decisions
- Utility operators to better understand FM O&M issues
- Maximizing FM piping life and reducing life-cycle costs

Questions?

bcopeland@hazenandsawyer.com sorourke@hazenandsawyer.com (513) 469-2750

References

- 1. The Great Lakes-Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers (2004) *Recommended Standards for Wastewater Facilities: Health Research Inc.: Albany, New York.*
- 2. Nayyar, M. L. (2000) *Piping Handbook,* 7th ed.: McGraw-Hill: New York, New York.
- 3. Jones, G. M. (2008) *Pumping Station Design*, 3rd ed.: Elsevier, Inc.: Burlington, Massachusetts.
- 4. USEPA (2000) "Wastewater Technology Fact Sheet: Sewers, Force Main": EPA 832-F-00-071.
- Departments of the Army and the Air Force (1985) "Sanitary and Industrial Wastewater Collection—Pumping Stations and Force Mains": Army TM 5-814-2, Air Force AFM 88-11, Vol. 2.
- 6. Poirier, M. R. (2000) "Minimum Velocity Required to Transport Solid Particles from the 2H-Evaporator to the Tank Farm": Westinghouse Savannah River Company: Aiken, South Carolina: WSRC-TR-2000-00263.
- 7. United States Department of the Interior, Water and Power Resources Service (1980) *Air-Water Flow in Hydraulic Structures:* Engineering Monograph No. 41.

