NPDES Permitting Process

NPDES Permit

- National Pollutant Discharge Elimination System
- Who needs one
 - Anyone who discharges wastewater to "waters of the state"

Different Types of Regulated Wastewaters

- Sanitary Sewage
- Stormwater
- Non-contact cooling water
- Industrial process wastewater

OAC 3745-01-02: "waters of the state"

All streams, lakes, reservoirs, ponds, marshes, wetlands, or other waterways situated wholly or partially within the boundaries of the state except private water not connected to natural surface of ground waters.

Different Types of NPDES Permits

Indirect NPDES Permits (Pretreatment)

Permits to discharge to a local POTW

General Permits

 The easiest of the NPDES permits available from the state, with the one size fits all, usually a short form, email to Columbus with the appropriate fee

Individual NPDES Permit

- Written specifically for your company
- Focus of this presentation

NPDES Regulation Trigger

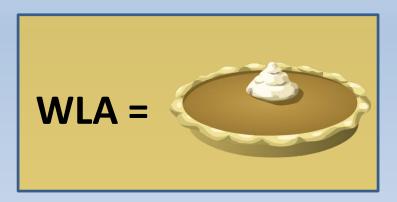
These all require that you first submit an application to the Agency...

- Discharging of treatment works discharging to "Waters of the State"
- Installing new treatment works
- Expanding treatment works or needing to modify
- Expiring existing NPDES Permits
- Significantly changing the characteristics of your permitted discharge

WLA - Wasteload allocation, the portion of a receiving water's loading capacity future point sources of pollution

PEL - Preliminary effluent limit, the most stringent applicable WLA expressed as both an average and a maximum

PEQ - Projected effluent quality, estimated level of a pollutant in an effluent


RP - Reasonable potential, the likelihood of a pollutant to cause or contribute to an excursion of a water quality standard

WQBEL - Water quality based effluent limit, an effluent limitation determined on the basis of water quality standards set forth in Chapter 3745-1

It's all about pie!

A permit allocates a "slice" of pie to a facility by way of a discharge permit.

Rules governing how to slice up the pie are located on OAC 3745-2.

Process is data driven.

Page 1 4PF00001*OD

Columbus Southerly WWTP; 4PF00001

Application No. OH0024741

Issue Date: June 30, 2010

Effective Date: August 1, 2010

Expiration Date: July 31, 2015

Ohio Environmental Protection Agency Authorization to Discharge Under the National Pollutant Discharge Elimination System

In compliance with the provisions of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et. seq., hereinafter referred to as the "Act"), and the Ohio Water Pollution Control Act (Ohio Revised Code Section 6111),

City of Columbus, Ohio

is authorized by the Ohio Environmental Protection Agency, hereinafter referred to as "Ohio EPA." to discharge from the Southerly Wastewater Treatment Plant wastewater Monthly Operating Report (MOR) Statistics for:

										,	
				# Below				Per	centiles		
Season		Year	# of Obs.	Detection	Minimum	5th	25th	50th	75th	95th	99th
Monitoring Station 001;		001;	Reporting	Code:	00300;		Paramete	r Name:	Dissolved	Oxygen (ı	ng/l)
Summer		2011	122	0	8.2	8.505	9	9.1	9.3	9.5	9.7
Summer		2012	120	0	8.2	8.895	9.1	9.2	9.3	9.5	9.581
Summer		2013	122	0	7.6	8.3	8.6	8.7	8.9	9.195	9.279
Summer		2014	122	0	7.6	8.2	7	8.9	9	9.2	9.637
Summer O	verall	2011-2015	486	0	7.6	8.4		9	9.2	9.4	9.7
Winter		2011	59	0	8		×5	10.8	10.9	11.21	11.3
Winter		2012	91	0	8.7	-~0	10	10.7	10.9	11.15	11.25
Winter		2013	90	0	0	e.V	J.725	10.2	10.5	10.755	10.91
Winter		2014	90	0	-4 K	\C .	9	9.4	10.1	10.955	11.6
Winter		2015	90		06,	8.8	9.025	9.4	9.7	10	10.022
Winter Ove	rall	2011-2015	420	12/2/	6	8.8	9.4	10.05	10.7	11.005	11.3
Annual		2011		CII_{O}	0.1	8.7	9.2	9.7	10.4	11	11.2
Annual		2012	Uli	5	8.2	9	3.725 9 9.025 9.4 9.2 9.2 8.7	9.7	10.425	10.985	11.137
Annual		2013	V	0	5.1	8.4	8.7	9.2	10.2	10.9	11.1
Annual		2014		0	7.6	8.42	8.8	9	9.7	11	11.972
Annual		2015	120	0	8.4	8.995	9.4	9.6	9.9	10.205	10.481
Annual Ove	erall	2011-2015	1579	0	0.1	8.5	9	9.4	10.2	10.9	11.3

OhioEPA Division of Environmental Services Laboratory Inorganic Analysis Data Report

Date Received 04/21/2015 1:07 PM Matrix SW Begin End Date Collected 04/21/2015 10:45 AM Program CDO-DSW

Client DSW OEPA Division DSW

Sample 174314

Location 2 - BIG DARBY CK @ SR 316 AT DARBYVILLE

Collected by LEWIS, JEFFREY Sample Type AMBIENT Station ID 601300 Customer ID 15JWL0421 External ID 133320 County PICKAWAY

Analysis	Parameter	Storet	Result	Value	DF	RL	MDL	Units	Date Qualifier
Solids_Diss	Total Dissolved Solids	~0	416	416	1	10	3	mg/L	04/22/15
Solids_Susp	Total Suspended Solir	Ω_{L} .		64	1	5	1	mg/L	04/22/15
ICPMS_(WAT)	Arsenic) ^	1.5	1	2	0.1	ug/L	05/22/15 U+
ICPMS_(WAT)	Cadmium	,,,	EDA		1	0.2	0.02	ug/L	05/22/15 U+
ICPMS_(WAT)	Chromium	P1034	~"A	Cx		2	0.1	ug/L	05/22/15 U+
ICPMS_(WAT)	Copper	P1042	2.4	Ur	9 ~	1	0.2	ug/L	05/22/15
ICPMS_(WAT)	Lead	P1051	<2.0	1	dh	^	0.1	ug/L	05/22/15 U+
ICPMS_(WAT)	Nickel	P1067	2.4 <2.0 3.7 <2.0	3.7	''	U_{λ}	*	ug/L	05/22/15
ICPMS_(WAT)	Selenium	P1147	<2.0	0.7	1	ч	(a –	ug/L	05/22/15 U+
ICP_(WAT)	Aluminum	P1105	1140	1140	1	200		ug/L	05/14/15
ICP_(WAT)	Barium	P1007	94	94	1	15	3	ug/L	05/14/15

≥USGS USGS 03227500 Scioto River at Columbus OH 20000 second 10000 per cubic feet **USGS Flow Data** Discharge, 1000 400 Jun Jun Jun Jun Jun Jun Jun 10 11 12 13 14 15 16 17 2015 2015 2015 2015 2015 2015 2015 2015 Provisional Data Subject to Revision Median daily statistic (94 years) — Discharge

PEQ - Projected effluent quality, estimated level of a pollutant in an effluent

If Method A is applied, the maximum PEQ and the average PEQ are determined using the following equations:

Maximum PEQ = (maximum daily concentration) * F

Maximum PEQ * 0.73 Average PEQ =

If Method B is applied, the maximum PEQ is determined as the upper bound of the 90% confidence interval about the 95th percentile of the projected distribution of the daily effluent data, and the average PEQ is determined as the upper bound of the 90% confidence interval about the 95th percentile of the projected distribution of the monthly averages of the effluent data. The following equations and statistics are used to calculate the maximum and average PEQ: Number of effluent observations per month, minimum of 4.

Maximum PFQ exp(LM + k * LS)

Average PEQ for m<10 exp(LMA + k * LSA)

Average PEQ for m≥10 EX + k * sqrt(VX / m)

You can do it this way, by hand, or....

Total number of effluent observations.

averages of the effluent data5,

shown within the parentheses,

n - 1 = degrees of freedom.

Meeker³ (for "p"=0.95 and "1- α "=0.90.)

Inverse noncentral t-distribution function,

0.90 = numeric probability of upper confidence level.

daily effluent data5,

Mean of the natural logs of the daily effluent data,

Standard deviation of the natural logs of the daily effluent data,

natural logs of the monthly averages of the effluent data⁵,

Natural log of the quantity shown within the parentheses. Square root of the quantity shown within the parentheses,

In(EX) - 0.5 * LSA² = Estimated mean of the natural logs of the monthly

 $sgrt\{ ln[VX/(m*EX^2) + 1] \} = Estimated standard deviation of the$

 $\exp(LM + 0.5 * LS^2)$ = Estimated long-term mean of the daily effluent

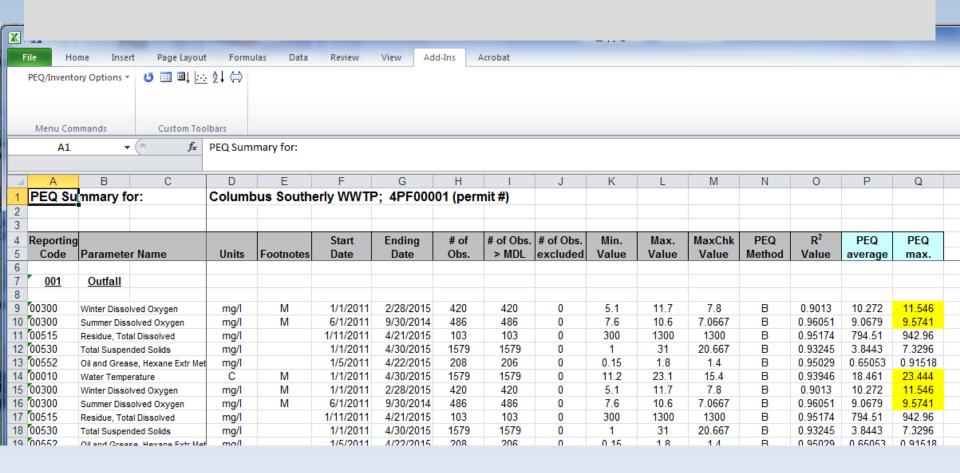
exp(2*LM + LS2) * (exp[LS2] - 1) = Estimated long-term variance of the

Base e (or approximately 2.71828) raised to the power of the quantity

TINV(p,df,nc) / sqrt(n) = Factor representing the position in the standardnormal curve of the upper 90% confidence interval about the 95th percentile for a data set with n observations. Derived from section 11.2 of Odeh & Owen². The factor can also be determined using Table 1 of Odeh & Owen2 (for "P"=0.95 and "GAMMA"=0.90), or Table A.12d of Hahn &

LM

EX


LMA =

exp() =

ln() =

TINV() =

or....do a little typing and click on the mouse!

A PEL a day.....

An example using Arsenic

WQS for Arsenic

150 μg/l Average PELs
340 μg/l Maximum

Maximum PEQ =	(maximum daily concentration) * F
Average PEQ =	Maximum PEQ * 0.73

F=2.3 for n=5

Scenario 2

563*2.3 = **1294.9**

1294.9*0.73 = **945.2**

PEL - Preliminary effluent limit, the most stringent applicable WLA expressed as both an average and a maximum

Scenario 1	Scenario 2
34 μg/l	430 μg/l
23	563
12	421
14	390
23	290

Scenario 1

Max PEQ = 34*2.3 = **78.2**

Ave PEQ = 78.2*0.73 = **57.08**

Congratulations! We have just calculated the size of your slice of the pie you currently have.

Flow

WQS for Arsenic 150 µg/l Average 340 µg/l Maximum

Magnitude and frequency of low flow for indicated periods

Period	Num- ber of consec-				or indica al (years		Period	Num- ber of consec-	Streamflow (ft ³ /s) for indicated recurrence interval (years)						
	utive days	2	5	10	20	50		utive days	2	5	10	20	50		
AprMar.	1	8.9	4.9	3.4	2.4	1.5	DecFeb.	1	30	18	12	8.7	5.5		
	7	11	7.8	6.6	5.8	4.9		7	33	21	16	12	8.8		
	30	14	9.9	8.4	7.4	6.4		30	55	31	23	19	14		
	90	20	13	11	9.7	8.3		90	165	99	71	52	35		
May-Nov.	1	8.9	4.9	3.4	2.4	1.5	SepNov.	1	9.6	5.7	4.3	3.3	2.5		
	7	11	7.9	6.8	6.0	5.2		7	11	8.1	7.1	6.4	5.9		
	30	14	9.9	8.4	7.4	6.4		30	17	11	9.0	8.1	7.3		
	90	20	13	11	9.7	8.4		90	41	21	15	12	8.9		

Loading = Flow * Concentration * 3.79

- 4.2 mgd*0.150 mg/l*3.79 = 2.387 kg/d Average Load
- 2.19 mgd*0.340 mg/l*3.79 = 2.82 kg/d Maximum Load
- (1) The following stream design flows shall be used to determine WLAs for discharges to flowing receiving waters, unless otherwise specified in this rule.
 - (a) 7Q10 for average aquatic life criteria (except for ammonia-nitrogen).
 - (b) 1Q10 for maximum aquatic life criteria (except for ammonia-nitrogen).
 - (c) HMQ for agricultural water supply, human health, and aesthetic criteria.
 - (d) 90Q10 for wildlife criteria.

Figure out the whole pie!

WQS for Arsenic 150 µg/l Average 340 µg/l Maximum **RP** - Reasonable potential, the likelihood of a pollutant to cause or contribute to an excursion of a water quality standard

Let's say the plant discharges 1 mgd

Scenario 1

Max PEQ = $78.2 \, \mu g/l$

Ave PEQ = $57.08 \mu g/I$

Max Load = 0.29 kg/d

Average Load = 0.21 kg/d

Scenario 2

1294.9 μg/l

945.2 μg/l

4.9 kg/d

 $73.58 \, \text{kg/d}$

2.387 kg/d Average Load

2.82 kg/d Maximum Load²

RP – Under Scenario 2 both the Average and Maximum loads exceed the PEL.

$$\frac{WQC (Q_{eff} + Q_{up}) - Q_{up} (WQ_{up})}{Q_{eff}}$$

WLA - Wasteload allocation, the portion of a receiving water's loading capacity that is allocated to one of its existing or future point sources of pollution

WLA for Arsenic Average WQS (mg/l) 0.150 * (1.547+6.6) - 6.6(0.005) = 0.769 1.547

WLA for Arsenic Maximum (mg/l) 0.340 *(1.547+3.4)- 3.4(0.005) = 1.076 1.547 Max Load= 4.9 kg/d Average Load= 3.58 kg/d

Your slice of pie is too big! Time for a diet.

Translation:

- (A) For each discharge that may require the development of water quality-based effluent limitations (WQBELs), Ohio EPA shall develop wasteload allocations (WLAs) for pollutants if:
 - (1) The maximum projected effluent quality (PEQ) determined for that discharge and pollutant is greater than or equal to twenty-five per cent of the smallest of the applicable maximum criteria, where the maximum PEQ is determined in accordance with paragraph (D) of this rule and the criteria are determined in accordance with paragraph (E) of this rule; or
 - (2) The average PEQ determined for that discharge and pollutant is greater than or equal to twenty-five per cent of the smallest of the applicable average criteria, where the average PEQ is determined in accordance with paragraph (D) of this rule and the criteria are determined in accordance with paragraph (E) of this rule; or

Your wasteload concentrations are:

Average = $769 \mu g/l$ Maximum = $1076 \mu g/l$

But wait...there is more!

The Agricultural standard for average concentrations is 100 μ g/l The Inside Mixing Zone standard is 680 μ g/l

Both are more restrictive than the WLA and become your new limits

Waste Load Allocation N	lodel: Main Da	ta Entry Scre	en (v3.4)	Instructions		Print Page
Today's Date:	6/18/2015		Note: Inputs all	owed only in the turquoise shaded cells		
Revision History:	0/10/2013		recto. Imputo dil	Since only in the torquoise shaded cells	Outfall:	001
Entity Name:	Company X				River Mile:	001
Permit No:	Company X			Π 🛕	raver mile.	
	Stream			Writer		
receiving out carrievator body.	oucum			Reviewer		
			_	The second secon	Receiving	water type:
Use Designations:	Aquatic Life Use	WWH	(stream	rater type.
	Water Supply	AWS, IWS	_			
	Recreation				Discharge	within 500 yards o
	Special					pply intake:
	oposia.				no	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			O alast Dasses	1		
Basin:	Ohio River Basin		Select Parame	eters		
	Units	Season	Value	Source	Percent of	of Stream
Upstream Flows	-				to use ir	
7Q10	cfs	summer				100
		winter				100
		annual	6.6			100
1Q10	cfs	annual	3.4			100
30Q10	cfs	summer				100
		winter				100
90Q10	cfs	annual				100
Harmonic Mean Flow	cfs	annual				100
Mixing Assumption	%	average	100			
		maximum	100			
Downstream WQ:						
Temperature (75th percentile	dograpa C	cummor				
remperature (75th percentile	uegrees C.	summer winter				
pH (75th percentile)	standard units	summer				
pri (75til percentile)	Stariuaru uriitS	winter				
		WILLEI				
Hardness	mg/l	outside mixing zon	e			
	mg/l	inside mixing zone				
Effluent Design Flow (cfs)	1.547	(in MGD):	1			
Alternative Dilution Footses						
Alternative Dilution Factors	(MZM)		1			
for Inside Mixing Zone Criteria for Outside Mixing Zone Maxir		MN.	1			
	num Criteria (OMZI	vi)	1			
for Average Criteria						
Stream/Discharge Flow Ratio:	4.266321913					

	Water	Quality	Criteria					
Company X								
	Note: Under	the 'Footnotes'	column, "c" me	ans carcinogen,	"BCC" means I	bioaccumulat	ive chemical o	f concern.
			Ave	erage		Max	cimum	
<u>Parameter</u>	<u>Units</u>	Wildlife	Human	Agricultural	Aquatic]	Max. AQ	Footnotes
			Health	Supply	Life	IMZM	Life	
Arsenic - TR	ug/l		580	100	150	680	340	
MISCHIC - IIV	ugn							

_	Arsenic - TR	ug/I		580	100	150	680	340	
		Calculati	ing PEQs (Projecte	ed Effluent Q	(uality)			
				_					
Comp	any X				*** Under NO	circumstan	ces should	you insert ro	ws. Deletions
Note:	C Is s aded t	turquoise requi	re data entry.		should be	made using	the toolb	ar option. ***	
	S nc		Number of		Method of				
	.,6	1276	Observations	#>	Calculation	Maximum	_	PEQ	PEQ
Param	<u>neter</u>	<u>U ts</u>		MPL	(enter A or B)	<u>Value</u>	F Value	<u>Average</u>	<u>Maximum</u>
			4						
Arsen	ic - TR	ug/l	5	4 5		563	2.3	945.277	1294.9

Print Tables			_				onder	HO SP di Sta	CE Shou	ld y u ins	ert rows. L	eletions s	should be i	nade using	the toolbar
			Reasonable Potential - Part I:					ny X			> -				
											70				
<u>Instructions</u>					Aver	age						Slax	kimum		
Parameter	<u>Units</u>	Wildlife	Human	Agricultural	Aquatic						Max. AQ				
			Health	Supply	Life	PELavg	PEQavg	%	Group	IMZM	Life	PELmax	PEQmax	%	Group
Arsenic - TR	ug/l		580	100	150	100	945.277	945.28	W	680	340	340	1294.9	380.85	W
Ammonia-S	mg/l				1.9	1.9	0		1				0		1
Ammonia-W	mg/l				5.6	5.6	0		1				0		1

Table 7.	Summa	ary of Efflue	ent Limits to	Maintain Ap	plicable WQ	Criteria
		O	utside Mixin	g Zone Crite	ria	Inside
			Average		Maximum	Mixing
		Human	Agri-	Aquatic	Aquatic	Zone
Parameter	Units	Health	culture	Life	Life	Maximum
Arsenic - TR	ug/l	580	100	769	1076	680

Factshe	et Tables					Assign Paramete	er Groupings
						Assign Faramete	er Groupings
Table 8.			Paramete	er Assess	ment		
Group 1:	Due to a lac	k of criteri	a, the follo	wing paran	neters cou	ıld not be evaluat	ed at this time.
					L		
Group 2:			-			n detection limit.	
	WLA not re	quired. No	o limit reco	mmended;	monitorin	g optional.	
Group 3:	DEO < 5	nercent o	f maximum	DFI and	DEO <	50 percent of av	erage DFI
Group 3.	No limit rec				_	o percent of av	relage FLL.
	No mint rec	ommended	, 111011110111	ig opuonai.			
Group 4:	PEQ _{max} >=	50 percent	but < 100	percent of	the maxi	mum PEL or	
_				-			ring is appropriate.
	Cavg	1					- Francisco
Group 5:		-	-			or average PEQ	
	percent of the	he average	PEL, or e	ther the av	erage or	maximum PEQ is	s between 75
	and 100 per	cent of the	PEL and o	ertain con	ditions tha	it increase the ris	k to the
	environment	are presen	nt. Limit re	ecommend	ed.		
	Limits to Pr	otect Num	eric Water	Quality Cr	<u>iteria</u>		
						Recommended I	
	<u>Parameter</u>		<u>Units</u>		<u>Period</u>	Average	Maximum
	Arsenic - TR		ng/I			100	680
	Aiseine - IK		ug/l			100	000

Arsenic

WQBEL - Water quality based effluent limit, an effluent limitation determined on the basis of water quality standards set forth in Chapter 3745-1

Average limit in permit = $100 \mu g/l$

Maximum limit in permit = 680 μg/l

Knowing all of this, it is Important to Review NPDES Permits and Understand the Information used to Create the Permit

The Importance of Reviewing Your Draft Permit

Or ...

Would You Sign a Contract Without Reading it First

- It is important to review the permit during the 30-day draft period.
- Understand the concepts that were used to develop the permit.
- 3. Get together with the permit writer at Ohio EPA within the 30-day review period to discuss the permit if you have questions.
- 4. If you need more time than the thirty days, let Ohio EPA know.

District Offices

Central District	(614) 728-3778
Northeast District	(330) 963-1200
Southeast District	(740) 385-8501
Southwest District	(937) 285-6357
Northwest District	(419) 352-8461

Questions?

Thank you!

Phil Rhodes EnviroScience (330) 688 - 0111

Bill Zawiski Ohio EPA (330) 963-1200

> John Kwolek EnviroScience, Inc. (330) 688-0111

> > Dominic Nardis EnviroScience, Inc. (330) 688-0111

