Flow Monitoring – Monitor Types, Comparisons and Accuracies

John M.H. Barton PhD, PE; Stantec Consulting, Inc.

One Team. Infinite Solutions

Area-Velocity Equipment

Volumetric Flow Rate equals the Average Advective Fluid Velocity times the Cross-Sectional Area of the flow perpendicular to the Velocity.

Pipe Flow

The velocity tells us the feet of water which passes a point every second.

Circular Pipe Example

Consider a 12" pipe flowing 4 inches deep at 2 feet per second

Calculating Area

For a 12" pipe flowing 4 inches deep, D = 12 in, d = 4 in

$$\theta = 2 \arccos\left(\frac{12 - 2(4)}{12}\right) = 2 \arccos\left(\frac{1}{3}\right) = 141^\circ = 2.46 \text{ rads}$$

$$A = \frac{D^2}{8} \left(\theta - \sin \theta\right) = \frac{12^2}{8} \left(2.46 - \sin(2.46)\right) = 18 \left(1.83\right) = 33.0 \text{ in}^2$$

$A = 33.0 \text{ in}^2 \text{ or } 0.229 \text{ ft}^2$

Calculating Flow

At 2.0 $\frac{ft}{sec}$

The volume every second is therefore,

Q = VA

 $Q = 2.0 \frac{\text{ft}}{\text{sec}} \times 0.229 \text{ ft}^2 = 0.458 \frac{\text{ft}^3}{\text{sec}}$

Example Answer

For the 12" pipe flowing 4 inches deep at 2 feet per second

Flow = 0.458 cfs

How About Other Shapes?

Rectangular Channel

Consider a 36 inch wide by 15 inch deep channel flowing 9 inches deep at 3.6 feet per second

Calculate Area

$$A = (36 \text{ in}) (9 \text{ in}) = 324 \text{ sq in}$$

 $A = (324 \text{ sq in}) \frac{(1 \text{ sq ft})}{(144 \text{ sq in})} = 2.25 \text{ sq ft}$

Calculate Flow

The volume every second is therefore,

Q = VA

$$Q = 3.6 \frac{\text{ft}}{\text{sec}}$$
 x 2.25 ft² = 8.1 $\frac{\text{ft}^3}{\text{sec}}$

Depth of Channel?

In the Circular Pipe we used the <u>Diameter of Pipe</u> (D) in the flow calculation. Why did we not use <u>Depth of Channel</u> (15") in the rectangular channel calculation?

What Do We Actually Measure?

Pressure Transducer Airspace Ultrasonic Water Depth Ultrasonic

Depth

Velocity

Continuous Wave Doppler Range Gated Doppler Faraday Surface Radar

Some Common Monitors

ISCO 2150, 2151

Sigma 910, 920, 930

ADS FlowShark, Triton

Marsh McBirney Flo-Tote

Marsh McBirney Flo-Dar

ADS Pulse

ISCO 2150: Technology

Level

Pressure transducer, or 2150 with Ultrasonic

Continuous Wave Doppler velocity Centroid of return spectrum

Pressure Sensor

All this to keep Atmospheric Pressure on the back side.

Pressure Sensor

He is so fragile that if you touch him, he dies.

Pressure Sensor – Dessicant up at the top

Cable runs up to the top of the manhole where the tube vents to the atmosphere.

Pressure Sensor - Dessicant

Desiccant keeps the electronics dry.

Pressure Sensor - Dessicant

Level Problem

Hydrophobic Filter gets plugged

Has been replaced with a Gortex filter

Pressure Sensor

Can cause quite a disturbance to the flow.

Level: drift over long time

Stainless Steel Membranes are subject to creep over time..

Level Drift?

Daily total flow get closer and closer. Most likely drift.

Level: Redundant Probe Solution

Multiple Probes: Dual AV or AV and Ultrasonic

Doppler Velocity

Continuous Wave Doppler Velocity

The 1.0 MHz Ultrasonic Pulse is emitted by one sensor and recorded by the other

The faster the particle moves towards the probe, the higher the return frequency

The bigger the particle, the greater the strength of the return signal

Frequency – Average

Relative power

Return Spectrum

Frequency Shift (Hz)

Frequency – Peak to Average

Relative power

Return Spectrum

Frequency Shift (Hz)

Limitations of Continuous Wave: :Low Velocity

The continuous wave Doppler is sending at the same time is it receiving.

Frequency

Frequency Slow Flow

Velocity

Velocity: Deep Flow Underestimation

Velocity

ISCO 2150: Pros and Cons

Advantages Cost Effective Easy to Use Wireless capabilities Hard to lose data (But you can)

Disadvantages

Low flows not accurate Pressure Transducer can ramp at high V Pressure Transducer can drift Relatively big probe Not for greater than 24" of flow

SIGMA 910 : Technology

Level

Pressure Transducer

Velocity

Doppler

Peak to Average Conversion

Self Measures Peak and Average

Frequency – Peak to Average

Convert Peak Velocity to Average Velocity

By monitor measurement of Average

SIGMA 910: Pros and Cons

Disadvantages

Advantages Cost Effective Very easy to Use Hard to lose data Has a digital probe

Limited data storage (21 days) (Now Hach 900) CW not accurate < 1.0 fps Does not work well in ramping Does not work well in deeper flows Pressure transducer can drift

ADS FlowShark: Technology

Level

Pressure Transducer Air Space Ultrasonic

Doppler

Peak to Average conversion

Average (and Peak) to be measured in Field

Ultrasonic Sensor – Airspace

ULevel

Very stable with time

Can't be covered by silt

Ultrasonic Sensor - Airspace

ADS Flowshark

Ultrasonic Sensor - Airspace

What kind of conditions might cause trouble for an Airspace ultrasonic?

Very rough water

Velocity – Peak to Average

Convert Peak Velocity to Average Velocity

By field measurement of Average

Peak to Average Conversion

Must measure the Average Velocity by hand, with a PVM.

Unique to ADS: MLI level resets

MLI Velocity shifts

Lif file Overwriting

Level Spikes in Ultrasonic

ADS FlowShark: Pros and Cons

Advantages

Long term Stability

Disadvantages

- Can have the wrong velocity
- Very susceptible to slight changes in upstream hydraulics
- Data Management errors (lif, bin etc)

Ultrasonic and Velocity Pops

Wet Weather Flow Monitoring Equipment

ADS Environmental Model 3600 Open Channel Flow Monitor

Part I - Laboratory Test Results

Under a Cooperative Agreement with SEPA U.S. Environmental Protection Agency

MMI Flo-Tote 3 - Technology

Level

Pressure Transducer

Velocity

Faraday sensor

Faraday Velocity

Faraday Velocity

Faraday Velocity

The Calibration Coefficient relates the Sensed Velocity to the Average Velocity.

Velocity

MMI Flo-Tote 3 – Pros and Cons

Advantages

Works in churning water Works in Clear Water Works in Zero Velocity

Disadvantages

Must be profiled to be accurate

Can be wrong and you don't know it

Does not work well if flows do not continually cover the probe (Dry Pipe)

MMI Flo-Dar - Technology

Level

Airspace Ultrasonic

Supplemental pressure transducer

Velocity

Surface Radar

Supplemental submergence probe

Converts Surface Velocity to Average Velocity.

MMI Flo-Dar – Manhole Transition

We try to get velocity in the pipe, but level is measured in the Manhole.

How many pipe to manhole transitions are smooth?

MMI Flo-Dar – Manhole Transition

MMI Flo-Dar – Pros and Cons

Advantages

Non Contact Clear Water

Disadvantages

- **Expensive with 'extras'**
- **Pipe to Manhole transition**
- **Manhole Fillet**
- **Sensitive signal**
- Surface Velocity to average conversion

FlowShark Pulse - Technology

Velocity Range Gated Doppler

Level

Ultrasonic under water Can take airspace ultrasonic also

Ultrasonic Sensor – Water Depth

Emitted upward by tip of probe.

ULevel

Needed for accurate range gating.

Can be covered by silt.

Can't be used in shallow flow.

FlowShark Pulse: Low Depth (2.5")

Range Gated Doppler

The Ultrasonic Pulse is emitted by one sensor and recorded by the same

Velocity

Each piece of the signal is separated into a different bin

Has some limitations

Range Gated Doppler

The Ultrasonic Pulse is emitted by one sensor and recorded by the same

Must have level information to prevent reflection processing

Must be placed on bottom of pipe

How do RG and CW Doppler Compare for Large Pipes

Pulse (RG) and ISCO 2150 (CW) installed in the same 72" pipe

Calibration
Pulse vs ISCO 2150

Flow Error

Calibration

MMI Flo-Dar vs Pulse

Flow Error

FlowShark Pulse: Pros and Cons

Advantages

Accurate Range gated Doppler Works in churning water Works in Deep and Slow water

Disadvantages

Expensive Does not work well with silt Not integrated with Profile Does not work in flows less than about 3-4 inches

Concluding Observations

Long Term Monitoring Must have ultrasonic for the level, or both pressure and ultrasonic.

Flows deeper than 18or 20 inches should have range gated doppler.

New Technologies for small flows

Micromonitor

ADS Triton Non-contact probe (Like a mini FloDar which fits in the pipe)

How Many Storms Do You Need to Quantify I/I?

For the Modeler?

For the I/I guy?

Micromonitoring: Domestic Usage

30 second level data,

Micromonitoring

Some Questions

Which technology will work best with slow deep flow?

What flow conditions are the most likely to result in silt and sediment?

Which technology is most limited by silt and sediment?

Some Questions

- How does the Hach convert obtain the Peak to Average conversion?
- How does the Flowshark obtain the Peak to Average conversion?
- How does the FloTote obtain the Peak to Average Conversion?
- Why doesn't the ISCO 2150 need a conversion to the average flow?

Some Guidelines

Add ADS, Sigma, FloDar