SUSTAINING SCIOTO

Ohio Environmental Professionals Network Breakfast January 13, 2015

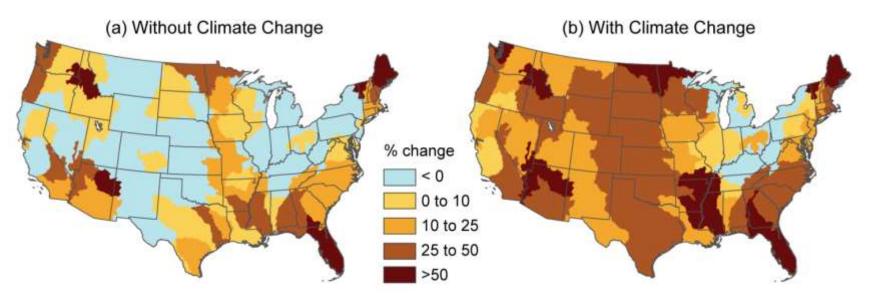
Agenda

- Project Overview
- Watershed/Climate Change Model Results
- Vulnerability Assessment
 - Sector based vulnerabilities
- Development of Adaptive Management Strategies
 - Strategy evaluation metrics, costs, time frame
 - Definition of High priority strategies
- Conclusions & Regional Considerations

SUSTAINING SCIOTO PARTNERS

DEPARTMENT OF PUBLIC UTILITIES

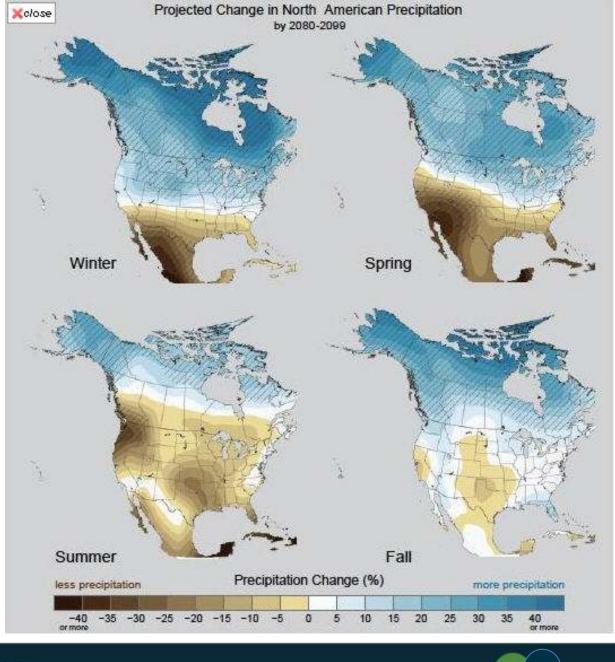
OHIO WATER DEVELOPMENT AUTHORITY



Mid-Ohio Regional Planning Commission

What prompted study?

Projected Changes in Water Withdrawals


2005 to 2060

Source: Brown, T. C., R. Foti, and J. A. Ramirez, 2013: Projecting fresh water withdrawals in the United States under a changing climate. Water Resources Research, 49, 1259-1276

The Need to Prepare for Future Weather Extremes

Ohio precipitation could increase 5-15% in winter & spring, decline 10% in summer by 2080-2099.

THE PAST \neq THE FUTURE **2014**

WHAT IS SUSTAINING SCIOTO?

- Models the effects of climate change on the Upper Scioto River Basin
- Uses technical data, climate modeling, and stakeholder input
- Develops an adaptive management plan for the region

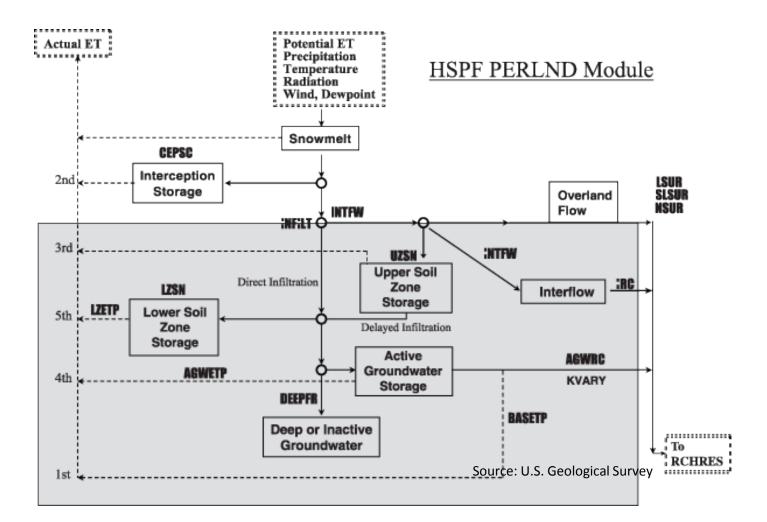
UPPER SCIOTO RIVER BASIN

- 3,200 square mile watershed
- Provides drinking water for nearly 2 million
- Provides 85% of the region's surface water supply

Sustaining Scioto Study Area

Two-Phased Project Approach

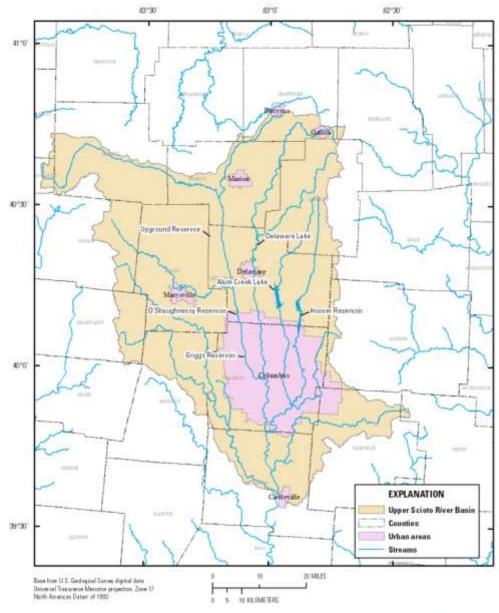
- Phase I
 - Development of a model to assess the impacts of changing weather patterns on water resources.
 - Model developed by the USGS specifically for the Upper Scioto watershed.
- Phase II
 - Develop an adaptive management plan using the results of the model and input from a broadly based Stakeholder Advisory Committee.


Upper Scioto River Basin - Hydrologic Effects of Potential Changes in Climate, Water Use, and Land Cover

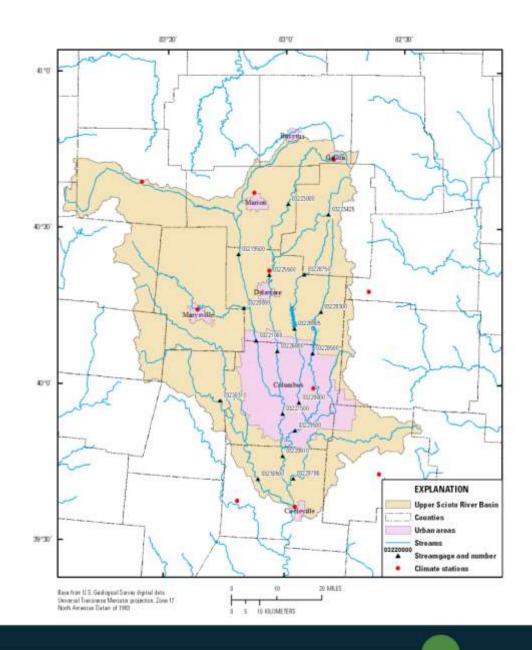
USGS Modeling

- Hydrologic model for the Upper Scioto River basin
- Calibrated based on historical observed data
- Simulate runoff characteristics for climatic conditions that are projected to occur in the future
 - Temperature
 - Precipitation
 - Evapotranspiration
 - With and without anticipated population growth and development

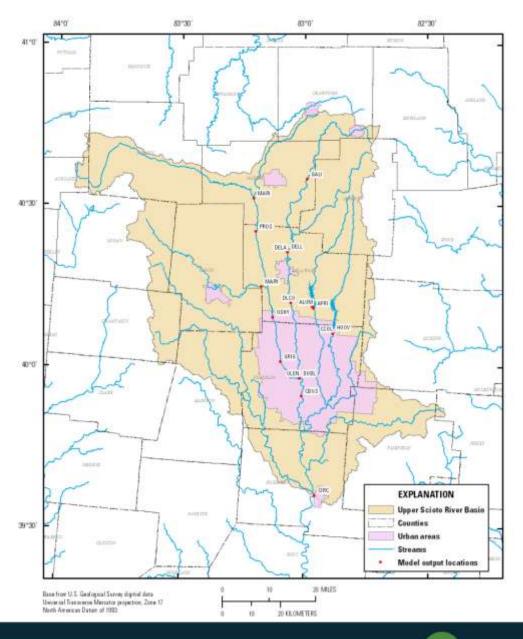
Hydrologic model


Water withdrawals and returns

 Modeled a total of 83 surface-water withdrawals and 38 return flows


Reservoirs

- Modeled operation of 5 in-line reservoirs and 3 upground reservoirs
- Reservoirs are operated for water supply and/or flood control


Hydrologic Model

- Model calibrated/ validated based on observed historical climate & streamflow time series data for 1989-2010
- Used data from 10 climate stations and 18 streamgages

Model output locations

 Daily mean simulation results output for the 5 in-line reservoirs and 12 stream sites

Global Climate Model (GCM) Data

- GCM source: Coupled Model Intercomparison Project - Phase 3 (CMIP3)
 - 16 models in CMIP3 data set
 - Native spatial scale = ~ 100 by 150 km (60 x 90 mile) grid cells
 - Downscaled spatial scale = ~ 12 x 12 km (7.5 x 7.5 mile) grid cells
 - Temporal Scale = Monthly for 1950-2099
 - Each model run based on 3 carbon emission scenarios (B1, A1b, A2)

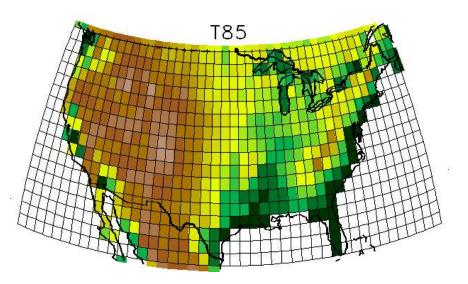
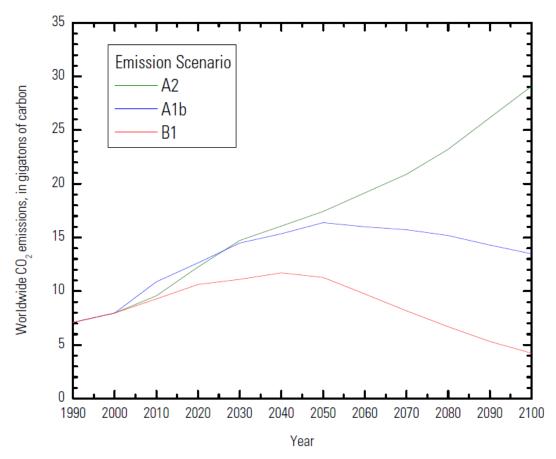



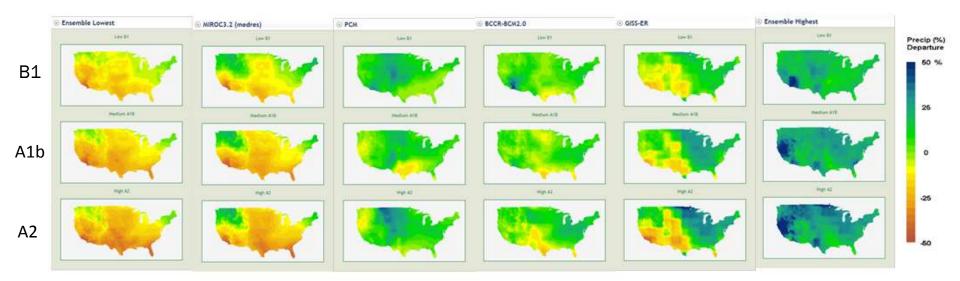
Image source: Warren Washington, NCAR

Carbon emission scenarios

- A2 population and CO₂ continuously increasing
- A1b population and CO₂ increasing until 2050, then declining
- B1 Not used (too optimistic?)

Source of data: Special Report on Emissions Scenarios (IPCC, 2000)

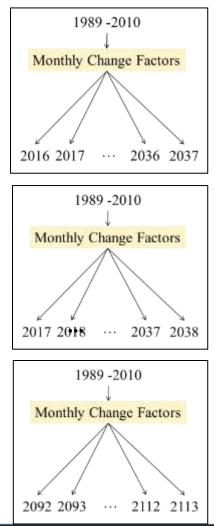
GCM selection


End of century (2080s) change in temperature

Source of images: www.climatewizard.org

GCM selection

End of century (2080s) change in precipitation

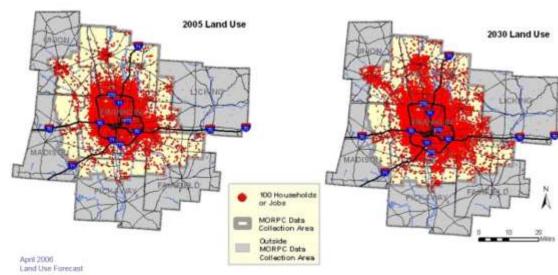

Source of images: www.climatewizard.org

Change factors

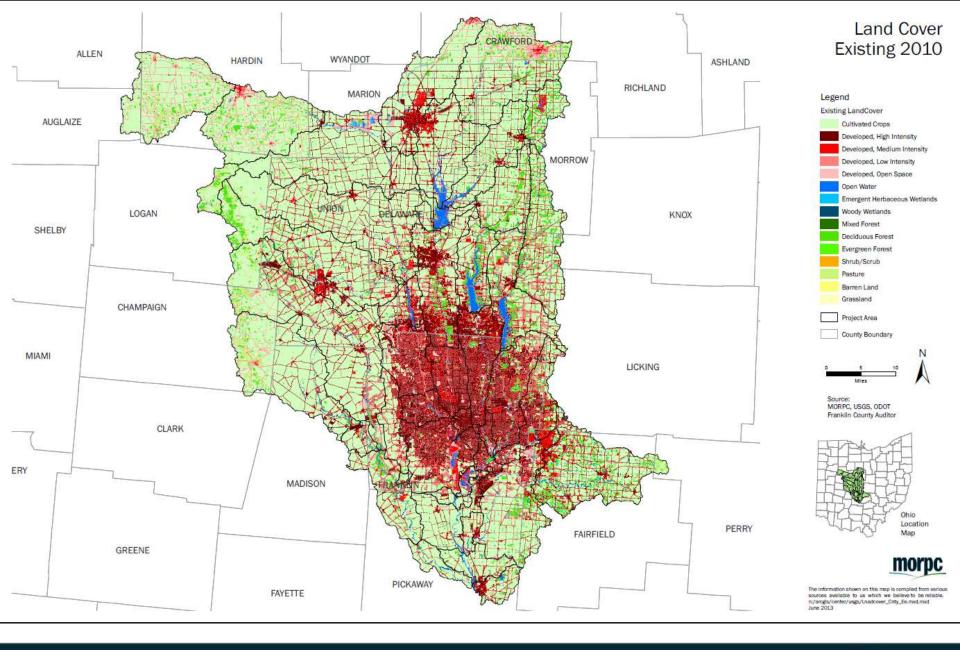
- Why? Monthly time resolution of GCMs not sufficient to model sub-basin processes
- Used monthly "change factors" to create hypothetical future climate series based on historical hourly climate series
- Change factors added to or multiplied by historical data to reflect future changes in precipitation and temperature indicated by GCMs relative to a baseline period (1980-1999)

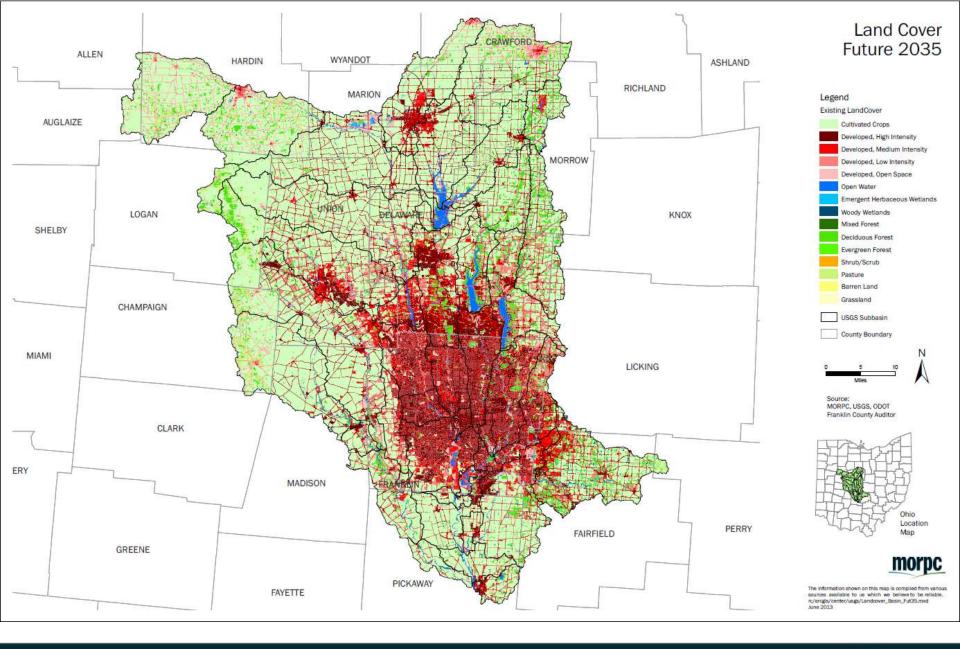
Created ensembles of future climate time series

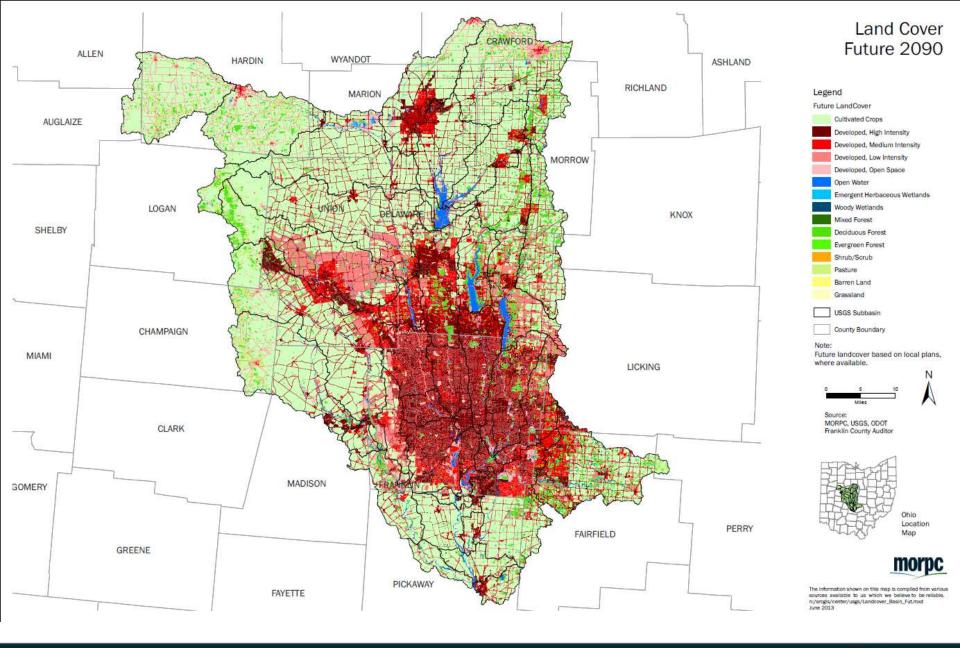
- The 1989-2010 historical climate time series used to compute climate time series beginning in 77 future years
- Done for each of 10 climate stations used in the model based on change factors from each of 8 GCM/emission combinations



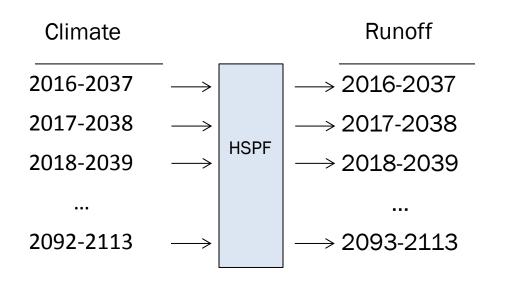
Two modeling scenarios


- **"Level 1"** = climate change + reservoirs
- **"Level 2"** = climate change + reservoirs + build-out


Build-out


- Development-driven changes in land cover and water use
- Future development based on current local zoning and population projections
- Build-out estimated for 2035, 2055, and 2075

Source: Mid-Ohio Regional Planning Commission



Simulations

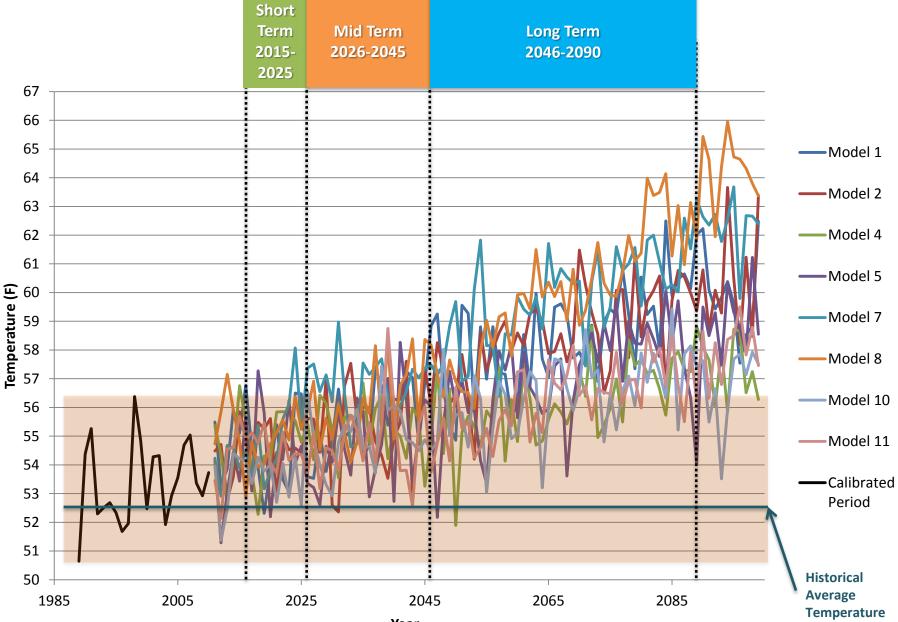
- Ensembles of future climate used to simulate ensembles of future hydrology for both level-1 and level-2 scenarios
- In total, more than 1,200 simulations run

Processing simulation results

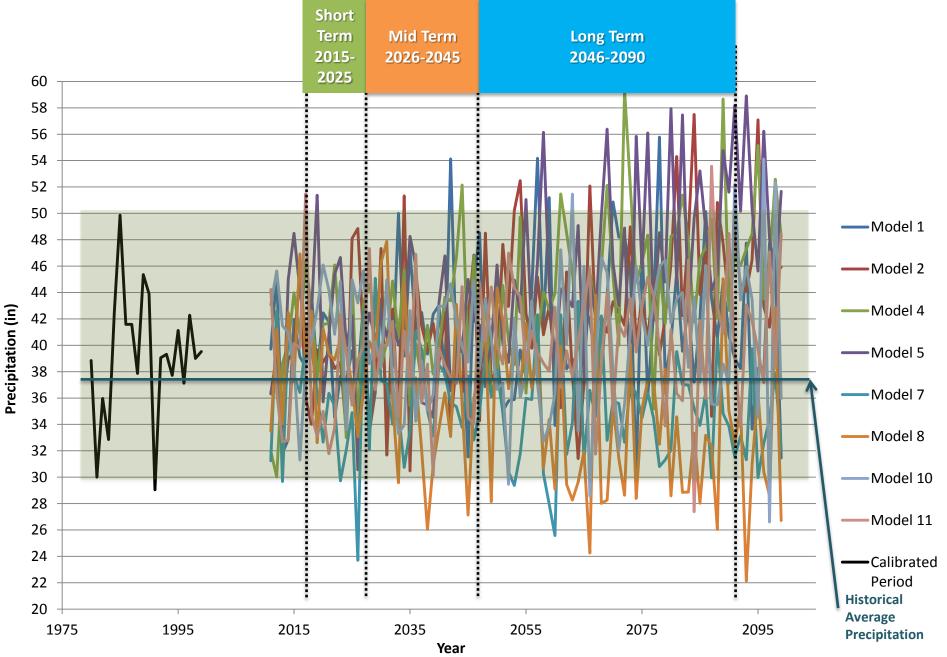
- Omitted first 2 years of results from each simulation (to establish water balance)
- Computed statistics of ensembles based on years with 20 results

Example of results for one GCM/emission scenario at one output location

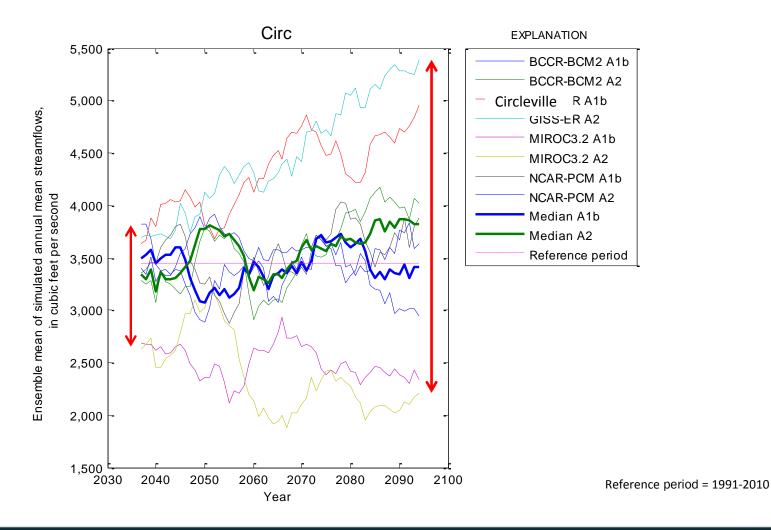
[..., intervening data not shown; max, maximum; min, minimum; N, number of observations]


Usable	Annual Mean Streamflow (in cubic feet per second)													
data	for indicated beginning year of simulation									Statistics				
begin													ensemble	
year	2016	2017	2018	2019	2020	2021		2090	2091	2092	max	min	mean	Ν
2018	71.7										71.7	71.7	71.7	1
2019	11.6	72.9									72.9	11.6	42.3	2
2020	76.0	11.6	73.5								76.0	11.6	53.7	3
2021	55.9	86.0	11.6	71.9							86.0	11.6	56.4	4
2022	93.9	65.3	87.0	11.7	81.8						93.9	11.7	67.9	5
2023	193.8	84.1	63.6	98.9	11.6	80.6					193.8	11.6	88.8	6
2036	91.3	104.9	165.1	102.4	122.9	186.8					217.0	11.7	105.2	19
2037	108.4	102.5	111.2	182.6	115.2	136.6					230.3	11.7	114.1	20
2038		109.8	105.2	108.4	185.1	114.5					225.3	11.7	117.6	20
2039			104.9	95.1	103.2	170.2					218.8	11.7	110.5	20
2040				99.4	88.1	98.8					200.9	11.7	102.4	20
2041					96.7	66.6					193.6	11.7	94.8	20
2042						93.0					198.7	11.7	93.7	20
2092								83.0			166.9	11.6	78.5	20
2093								11.6	81.2		164.9	11.6	78.4	20
2094								61.8	11.6	87.5	163.2	11.6	77.4	20

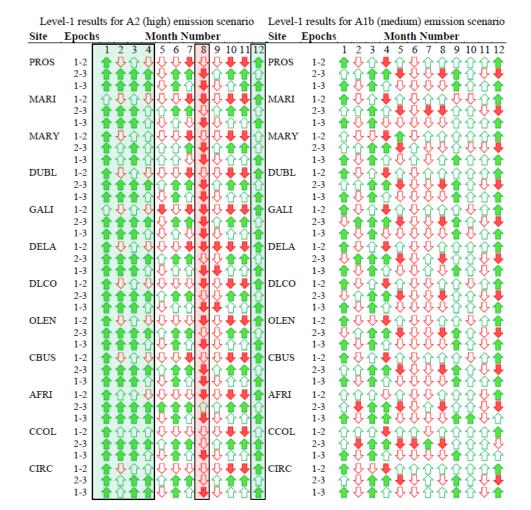
Analytical products


- Simulation results analyzed to provide information on:
 - Trends in annual, seasonal, and monthly streamflows and reservoir water-levels (only level 1)
 - Maximum and minimum 7-, 30-, and 180-day average streamflows and reservoir water-levels
 - Exceedance characteristics of 7- and 30-day average streamflows and reservoir water levels (only level 2)

Some provisional results ...

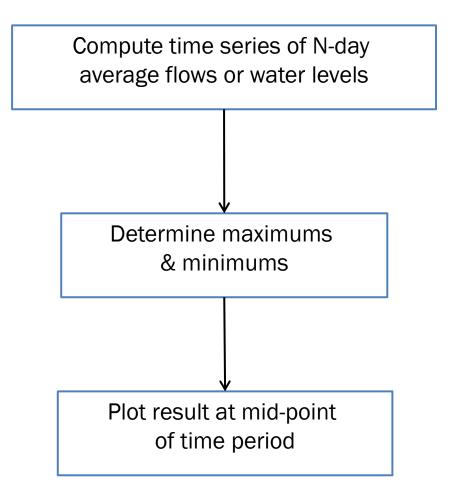

Actual vs Projected Annual Mean Temperature (F)

Actual vs Projected Annual Mean Precipitation (in)



Annual mean streamflows (level 1)

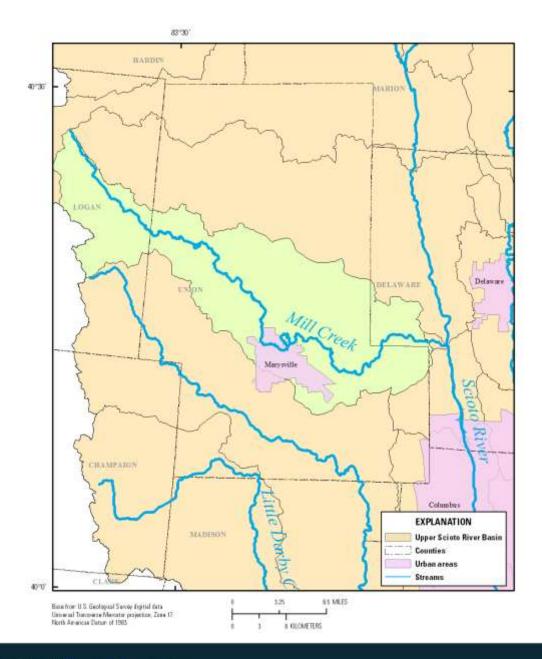
Monthly mean streamflows (level 1)

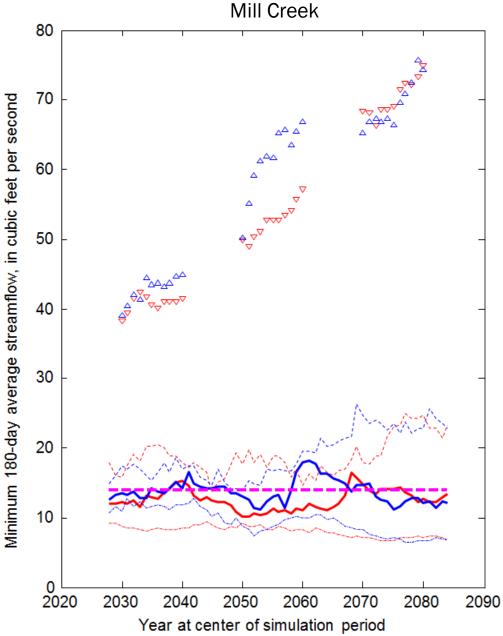

- Compared epoch medians
- A2 results
 - December-April mean flows generally increasing
 - August mean flows generally decreasing
- A1b results
 - Compared to A2 results:
 - Results more mixed and changes more subtle
 - February, June, July, and November had more decreases
 - September had more increases

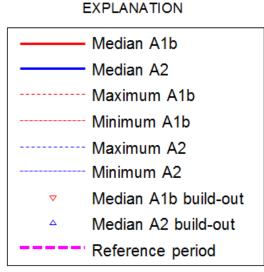
epoch 1 = 2037-2055, epoch 2 = 2056-2075, epoch 3 = 2076-2094

Max/min N-day averages (level 1)

- Computed running average 7-, 30-, and 180-day flows or water levels
- N-day results based on 20-year simulation periods
- N-day values plotted at midpoint of time periods
- N-day values are <u>the</u> <u>highest/lowest in period</u>




Max/min N-day averages (level 2)


- Level-2 N-day results based on 11-year simulation periods
- Computed only for periods centered within ±5 years of target build-out years (2035, 2055, 2075)
- Results plotted at center of simulation period

Median A1b build-out

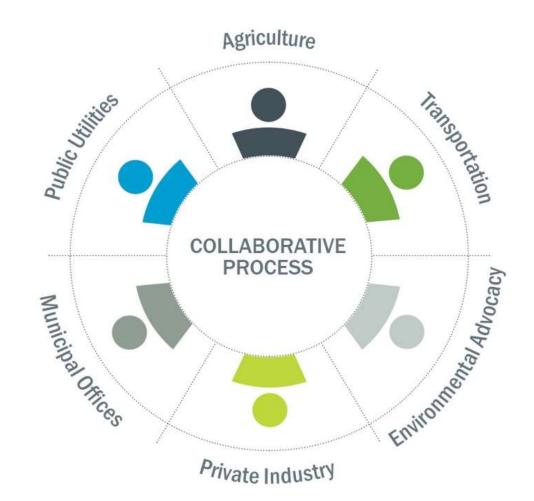
Median A2 build-out

- Marysville demand expected to increase by about 250% between 2035 and 2090
 - More water in = more water out
 - Groundwater supplies about half

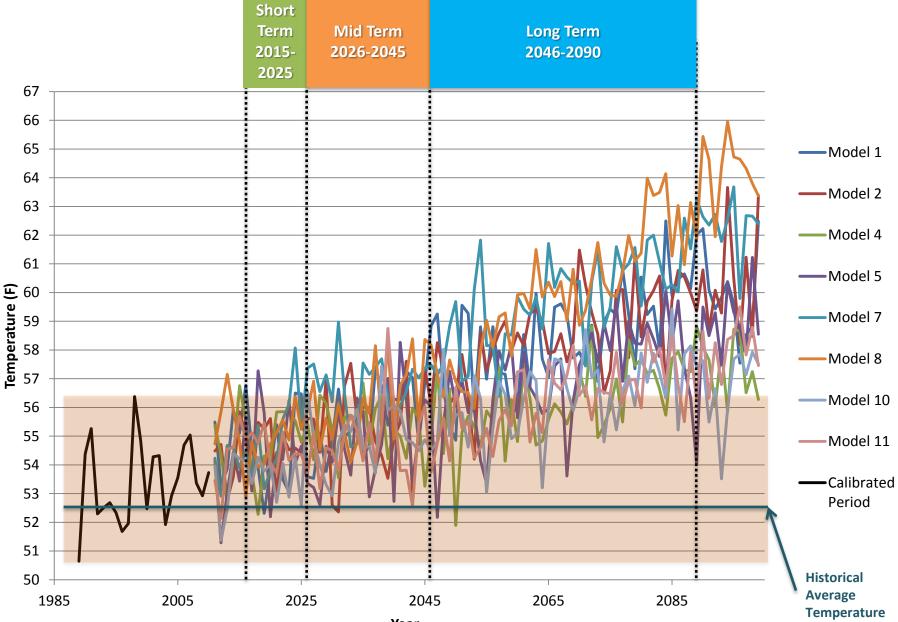
of water used by Marysville

Project status

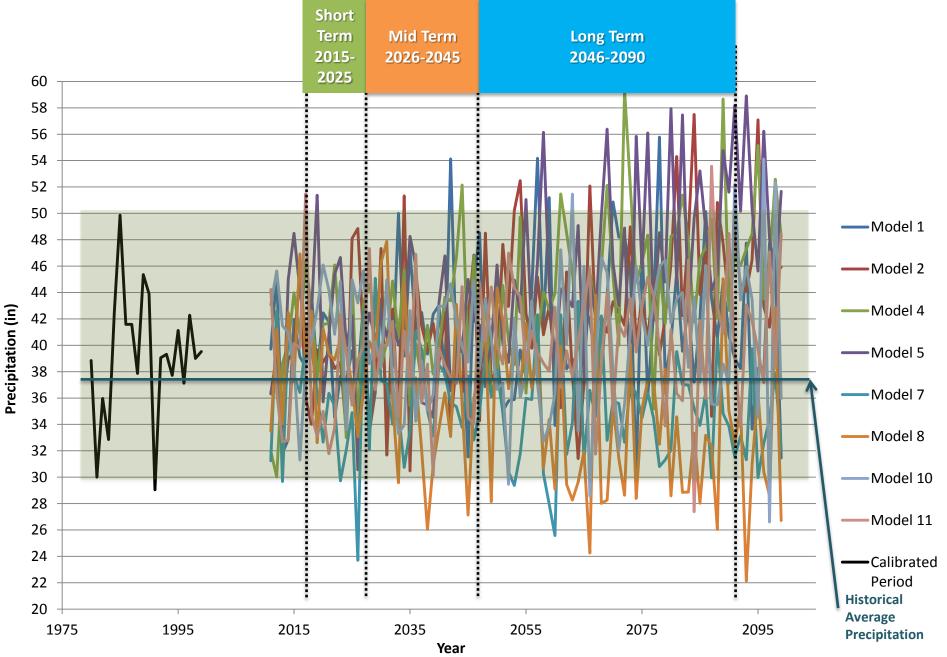
- Report on the Upper Scioto River Basin study is awaiting final approval
- Anticipated release this month

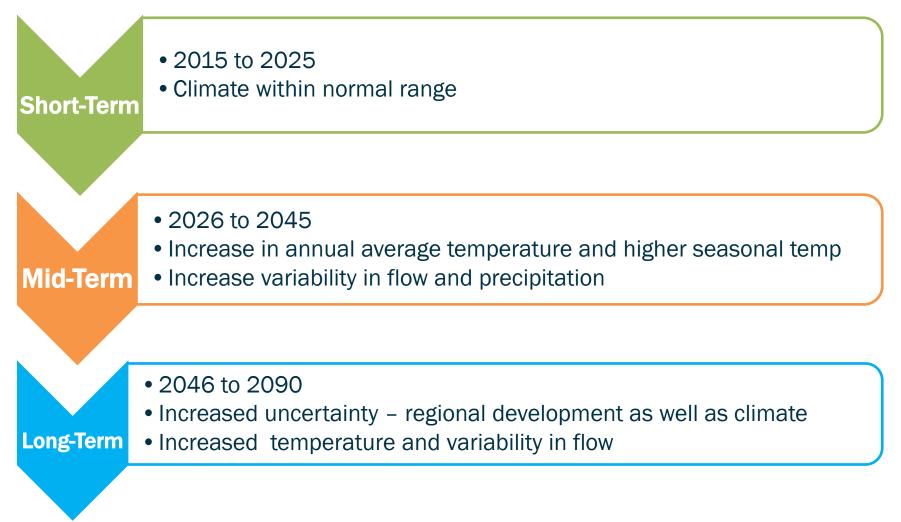

SUSTAINING SCIOTO ADAPTIVE MANAGEMENT PLANNING

MID-OHIO REGIONAL PLANNING COMMISSION

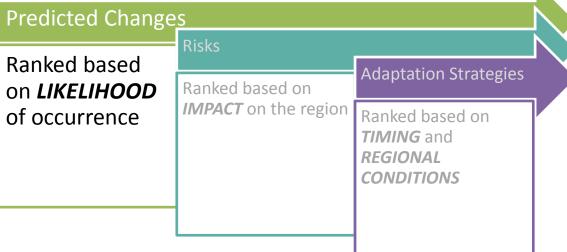


Stakeholder Advisory Committee


- Input on current and future water needs
- Assess vulnerabilities
- Evaluate adaptive management strategies

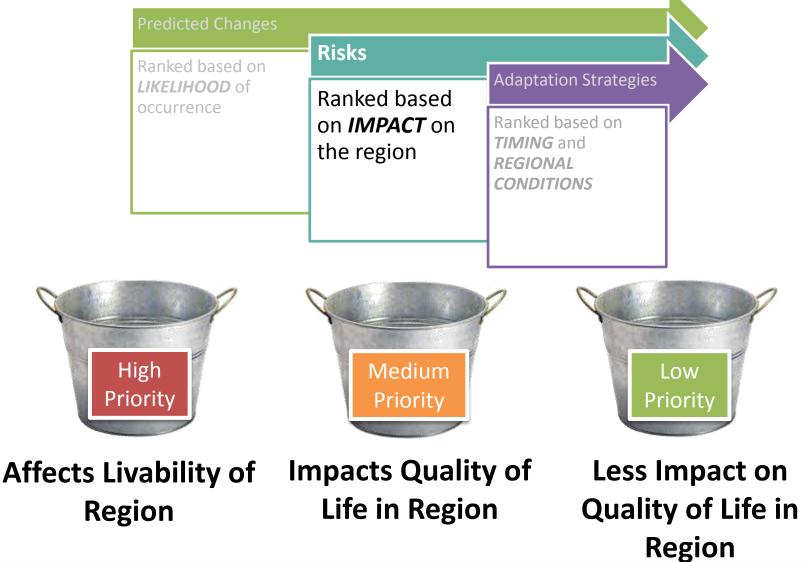

Actual vs Projected Annual Mean Temperature (F)

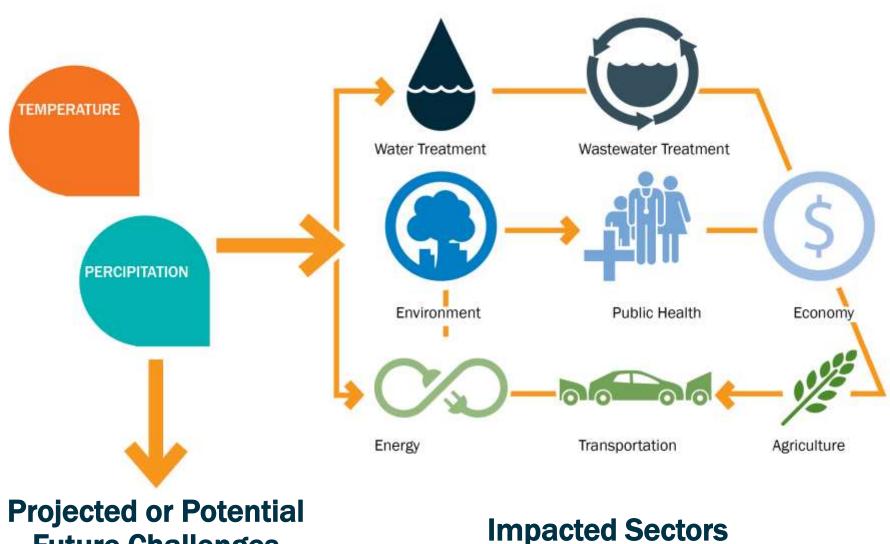
Actual vs Projected Annual Mean Precipitation (in)


CLIMATE & WATERSHED MODEL RESULTS

Overall Prioritization Methodology

Predicted Changes		
Evaluated changing conditions & ranked	Risks Ranked based on	Adaptation Strategies
based on <i>LIKELIHOOD</i> of occurrence	<i>IMPACT</i> on the region	Ranked based on <i>TIMING</i> and <i>REGIONAL</i> <i>CONDITIONS</i>


Prioritization Methodology: Predicted Changes


- Highly likely to occur:
 - Linked to defined trends from the model results and climate data
- Medium probability of occurrence:
 - Results shown in the models
 - Less distinct trends
 - Associated with build-out or trends in precipitation
- Low probability of occurrence:
 - Not directly predicted by the model results
 - Considered less likely to occur based on the analysis

PREDICTED CHANGES AND THEIR LIKELIHOOD OF OCCURRENCE

No.	Predicted Changes	Likelihood of Occurrence	
1	Increased air temperatures/increased incidence of heat waves	High	
2	Increased water temperature	High	
3	Warmer soil temperatures/decreased soil moisture	High	
4	Higher maximum flows (30- and 7-day higher peak river flows)	Medium	
5	Extended dry periods/summer drought (decreased minimum 30-day stream flow)	Medium	
6	Increased intensity of rain and wind events	Medium	
7	Change in vegetation/animal species composition	Low	

RISKS & IMPACTS

Future Challenges

Vulnerability Scenarios	Affected Sector								
,	Water Supply/ Water Quality	Water Treatment	Wastewater Treatment	Public Health	Agriculture	Environment	Economy	Energy	Transportation
	Increased evaporation, Reduced water volume	Negatively affects water ater demand quality	Impacts to infrastructure (increased corrosion)	Vector Diseases	Vegetation / Animal species shift	Vegetation / Animal species shift Increased smog / Decreased air quality	Extended recreational season Increased costs for utility services (water, wastewater, and energy)	Increased energy demand due to air conditioning, increased use of pumps for water / wastewater	Increase in road and bridge repairs and disruptions due to heat stress
	Increased water demand and demand due to irrigation				Livestock health / mortality				Increased use of private vehicles
Increased Air Tem- peratures / Increased	Increased in-stream TOC				Extended/disruptions to growing season				pintere termolos
incidence of heat waves	Increased nutrient/ pesticide / herbicide runoff due to extended growing season, increased algal blooms	Increased capital investment due to designing for peaking factors	Lower flow affects discharge permits and treatment	Increased issues for asthma and allergies	Increased use of herbi- cides/pesticides/ nutrients with longer growing season			Decreased efficiency throughout production as temperature rises	Change in construction materials for higher temperatures
	Increased watershed	Taste and odor concerns, potential for algal toxins	Increase need for odor	Impacts to human mortality, Increase in	ality, Increase in irrigation and controlled drainage		Increased service cost for food	Increased power disruptions (brownouts)	Extended but less efficient construction season
	erosion	Increased chlorine demand, Increase DBPs	control	heat illnesses and stresses on healthcare			Decreased human productivity		
	Decreased dissolved oxygen	Taste and odor concerns, potential for algal toxins	Lower DO/ changes in temp require affect wastewater discharge allocation	Increase in waterborne diseases	Increased costs to control water quality from fields Changes in pH ar pollutant toxicity		Algae growth could impact recreational use	Increased cost for energy production because have to cool discharge before released	Limited applicability
Increased water	Increased release of phosphorus and other pollutants from anoxic zones/sediment	Increased treatment costs due to algae and poten- tially algal toxins				Changes in pH and pollutant toxicity			
temperature	Decreased mixing		Decreased organics at	Increased use of disinfectants; increased	Treatment and disinfection use increases				
	Longer duration of poorer water quality	Increased treatment efficiency			Energy use for cooling	Negative impact on aquatic life diversity and numbers	Increased energy cost due to power plant		
	Increased algal blooms including blue greens (potential for increased toxin release)		DBPs	Livestock management	Decreased dissolved oxygen	discharge cooling			
					and aquaculture	Increase in algal blooms			
Warmer soil temperatures / Decreased soil moisture	Decreased groundwater base flow to streams	Increased treatment demands due to lower	Increased use of effluent sludge on farm fields	Impacts to private water systems	Increased need for irrigation and controlled drainage	Vegetation / Animal species shift	Negative impact on		Reduced salt usage in
	Reduction/change in vegetative cover	water WQ			Vegetation / Animal species shift	winter recreational activities if less snow/ice	Increased albedo; greater urban heat	winter	
	Increased watershed erosion				Increased soil conservation practices	increased erosion	e in invasive Higher food prices and potential job losses if	island effect leads to increased cooling demands	Embankment erosion and damage due dry
	Increased in-stream TOC Increased sediment deposition/loss of volume	water main breaks in winter			Increased need for crop insurance	Increase in invasive species			soils

THREATS & VULNERABILITIES

Water Supply/Quality High-Priority Risks

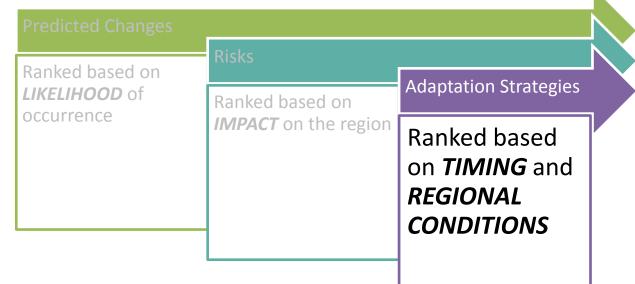
Predicted Changes	High Priority Risks
	Increased nutrient/pesticide/herbicide load due to extended growing
temperature	season
Increased water temperature	Increased algal blooms
	Increased TOC, nutrients, turbidity, sediment, and other pollutant loads to surface waters
peak stream flows	Increased algal blooms
	Increased watershed and stream bank erosion
Extended dry periods/	Decreased reservoir inflow/volume and reduced mixing
summer drought	Increased algal blooms
Increased intensity of	Increased watershed and stream bank erosion
wind and rain events	Increased TOC, nutrients, turbidity, sediment, and other pollutant loads to surface waters
	temperature Increased water temperature Higher maximum peak stream flows Extended dry periods/ summer drought

Water Treatment High-Priority Risks

No.	Predicted Changes	High Priority Risks
1	Increased air temperature	Taste and odor concerns, potential for algal toxins
2	Increased water temperature	Taste and odor concerns, potential for algal toxins
3	Higher maximum peak stream flows	Increased pollutant loads (from increased turbidity, organics, nutrients, microorganisms and other contaminants) in surface waters
4	Increased intensity of wind and rain events	Damage to infrastructure / infrastructure failure including power outages, flooding and intake damages

Wastewater Utility High-Priority Risks

No.	Predicted Changes	High Priority Risks
1	Increased water temperature	Lower DO/changes in temperature affect wastewater discharge allocation
~	wind and rain events	Damage to Infrastructure/infrastructure failure including power outage and flooding
		Increased CSO/SSO discharges


ADAPTIVE MANAGEMENT APPROACH

Iterative Approach:

re-evaluate and adjust as new information becomes available

Identification of Adaptation Strategies

- Types of Strategies:
 - Planning
 - Operational
 - Capital Improvement
- Estimate relative costs: \$, \$\$, \$\$\$
- No Regrets Strategies

ADAPTIVE MANAGEMENT PLANNING

Short Term 2015 - 2025

- Expand monitoring
- Increase emergency preparedness
- Source Management (Demand)
- Regional collaboration & public education

Mid-Range Term 2026 – 2045

- Regional Water Supply Plan
- Groundwater Supply Study
- Water reuse
- Enhance reservoir capacity
- Watershed Management Plan (Nutrient/ Pollutant Reduction)
- Re-evaluate climatic conditions

Long-Range Term 2046 – 2090

- Implement improvements from mid-range plans
- Re-evaluate climatic conditions

SUSTAINING SCIOTO: ADAPTATION STRATEGIES

Recommended Adaptation Strategies for Protecting Water Quality

Strategy	No Regrets	Cost
Planning and Policy		
Develop Water Quality Monitoring Plan	✓	\$
Develop an Agricultural Nutrient Management Program	~	\$
Implement public education on water quality, water supply & climate change impacts	✓	\$
Modify local ordinances to promote low impact development, stormwater harvesting/reuse	✓	\$
Develop Regional Watershed Management Plan to reduce nutrient runoff	 ✓ 	\$
Operational		
Implement increased fertilizer reduction programs, revegetation of riparian buffer zones, and other non-structural practices	~	\$\$
Capital Improvement		
Implement reservoir capital improvement projects		\$\$
Implement pollutant reduction projects (BMPs) to reduce pollutants of concern		\$\$\$

SUSTAINING SCIOTO: ADAPTATION STRATEGIES

Mitigating Impact of Damage to Infrastructure / Failure Related to Increased Intensity of Rain and Wind Events			
Strategy	No Regrets	Cost	
Planning and Policy			
Evaluate increased wastewater and stormwater storage options for extreme events	\checkmark	\$	
Update Regional Emergency Preparedness and Response Plans for extreme weather	✓	\$	
Evaluate wastewater system infrastructure vulnerabilities and needs	✓	\$\$	
Determine appropriate LOS during extreme weather events	✓	\$	
Develop Emergency Power Plan including backup power supplies	 ✓ 	\$	
Operational			
Establish SOPs for modified treatment plant operation during extreme events		\$	
Modify local ordinances to require LID, reduce impervious areas, and reuse rainwater	✓	\$	
Implement backup power supplies at pump stations and treatment facilities		\$\$	
Capital Improvement			
Rehabilitate or replace most vulnerable infrastructure		\$\$	
Set aside land to support future flood-proofing needs (berms, dikes etc.)		\$\$\$	
Implement flood control strategies at the WWTP and protect vulnerable infrastructure		\$\$\$	
Increase capacity for wastewater and stormwater collection, treatment, and discharge		\$\$\$	

RESULTS: WHAT DOES THIS MEAN FOR CENTRAL OHIO?

- Increased air & water temperature
- Degraded water quality
- Increased potential for both floods & droughts
- More extreme storm events

CHALLENGES:

Challenges to Utilities & Region

- Need for flexibility in operations and management
 Planning for both drought and extreme floods
- Regional issues may require regional collaboration

CONCLUSIONS: Adaptive Management Plan for Central Ohio

- Prepare region with No-Regrets strategies
- Short Term:
 - Regional Collaboration & Education
 - Source Resiliency
 - Watershed (WQ) Monitoring
 - Emergency Preparedness
- Update plan over time

CONCLUSION: WHAT CAN YOU DO?

- Consider impacts and adaptation strategies
- Identify partners and collaborate
- Develop a timeframe and benchmarks
- Consider how this will impact your community

MID-OHIO REGIONAL PLANNING COMMISSION

QUESTIONS?

Contact: David Rutter Watershed Coordinator MORPC T: 614.233.4186 drutter@morpc.org www.morpc.org/sustainingscioto

INVESTING TODAY. PRESERVING TOMORROW.