Preliminary Assessment of Nutrient Dependency of a Mixed Cyanobacteria Culture

Elizabeth Crafton, Anny Gao, Peter Trowbridge, Dr. Lan Zhang, Dr. Donald Ott, and Dr. Teresa Cutright

Presentation Overview

- Introduction
 - What is the problem?
 - Why is it a problem?
 - How to fix the problem
- Research Objectives
- Approach & Methods
- Results
- Future Work

What is the Problem?

- Cyanobacteria-dominated harmful algal blooms (cHABs)
- Adverse affects to aquatic community
 - Depletion oxygen
 - Hypoxia increasing internal flux
 - Further depletes biodiversity (mass)
- Toxicity (cyanotoxins)
- Public water systems
 - Recreational
 - Drinking water sources

Why is it a problem?

- Driving forces of the frequency and magnitude of cHABs are eutrophication and climate change
- Eutrophication
 - Excess nutrients
 - Inherently drives down biodiversity
- Climate Change
 - Photoautotroph
 - Air-water interface (CO₂)
- Weather

Eutrophication

- Point Source
 - Combined sewer overflow events
 - Weather (climate change)
- Non-point source
 - Weather (climate change)
 - Agriculture and urbanization (sheet flow)
- Internal loading
- Extensive accumulation (i.e. sediment)

How To Fix the Problem?

- Driving forces behind cHABs are elusive
- Short-term
 - Management
 - Treatment train adjustments: cyanobacteria cells, cyanotoxins, T&O compounds
 - In-situ management: algaecide treatment
- Long-term
 - Prevention
 - Reducing frequency and magnitude of cHABs
 - Influent nutrient concentration & internal loading
 - Stabilize the eco-system
 - Increased biodiversity

Research Objectives

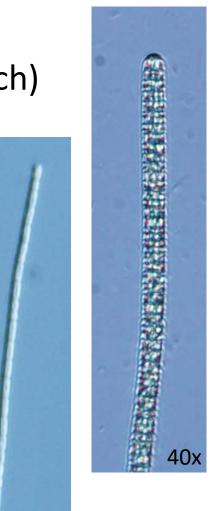
Overall objective:

Reduce the amount of cyanobacteria and cyanotoxins that can potentially enter the drinking water treatment plant.

- Long-term management strategy
 - Begin investigating the indigenous cyanobacteria
 - Investigate the relationship to common macronutrients (N and P)
 - C:N:P \rightarrow 100:10:1

Experimental Methods

Raw Materials


- Cyanobacteria collected with a plankton net (53 μm mesh)
- Growth chamber
 - 12:12hr light cycle
 - ~100 lumens/ft²
 - 25°C/20°C
- Raw source water (intake)

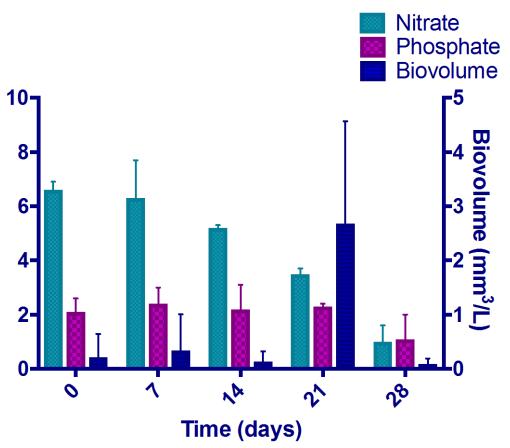
Experimental Methods

- Batch, fully sacrificed reactors (100 mL each)
- Filter-sterilized source water
- Three factors
 - Phosphate (0, 1, 2 mg/L)
 - Nitrate (0, 1, 2 mg/L)
 - Cyanobacteria (present/not present)
 - Planktothrix sp. & Pseudanabaena sp.
- Blank & 2 controls

40

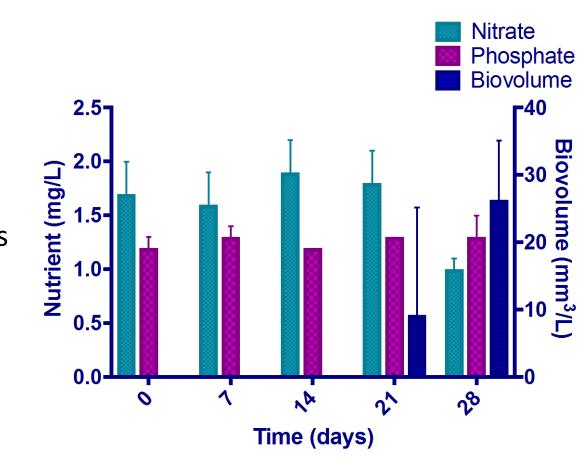
Experimental Methods

- Time interval: 0, 3, 7, 14, 21, and 28 days
- Cyanobacteria cell counts
 - Genera based composition of population
 - Palmer-Maloney counting chamber (400x)
- Phosphate & nitrate concentration
 - HACH DR 890 Colorimeter
- Water quality parameters
 - Hannah instrument (HI9829)
 - pH, temp etc.

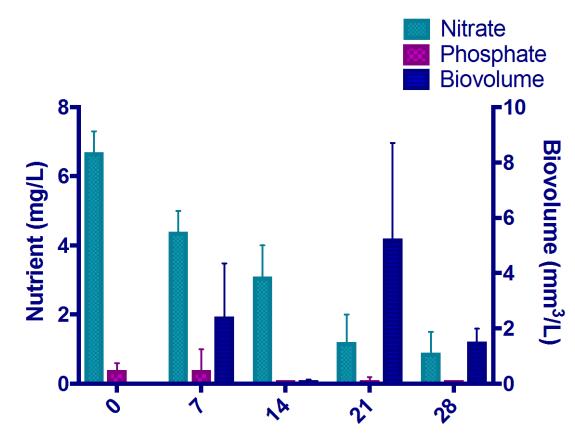

https://www.hach.com

Experimental Conditions

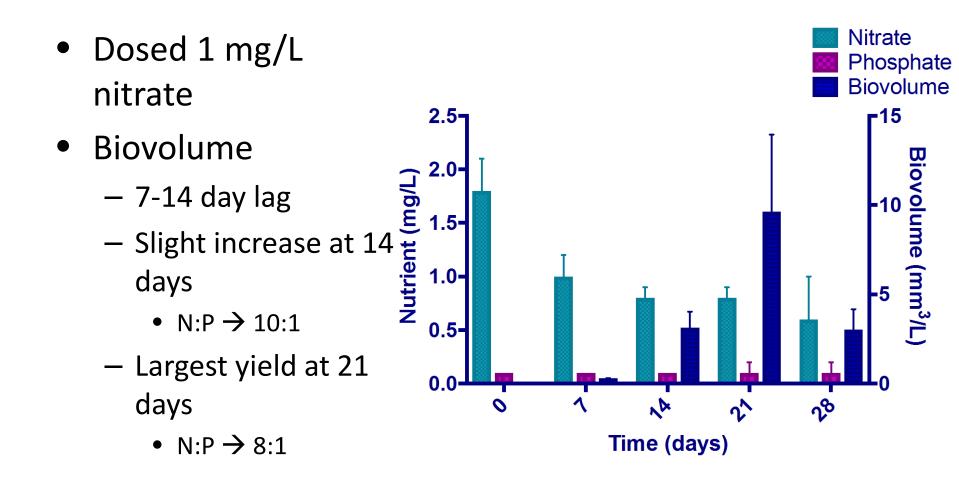
Experiments #	Phosphate (mg/L)	Nitrate (mg/L)
1	2	-
2	1	-
3	-	2
4	-	1


Experiment #1: Results

- Dosed: 2mg/L phosphate
- C:N:P \rightarrow 100:10:1
- **Biovolume**
 - No lag
- Nutrient (mg/L) Slight increase at 7 days
 - N:P \rightarrow 3:1
 - Largest yield at 21 days
 - N:P \rightarrow 2:1


Experiment #2: Results

- Dosed 1 mg/L phosphate
- Biovolume
 - 14 21 day Lag
 - Increase at 21 days
 - N:P → 1:1
 - Largest yield at 28 day
 - N:P → 1:1



Experiment #3: Results

- Dosed 2 mg/L nitrate
- Biovolume
 - 7 day lag
 - Increase at 7 days
 - N:P \rightarrow 11:1
 - Largest yield at 21 days
 - N:P → 11:1

Experiment #4: Results

Results: Summary

Phosphate Dose:

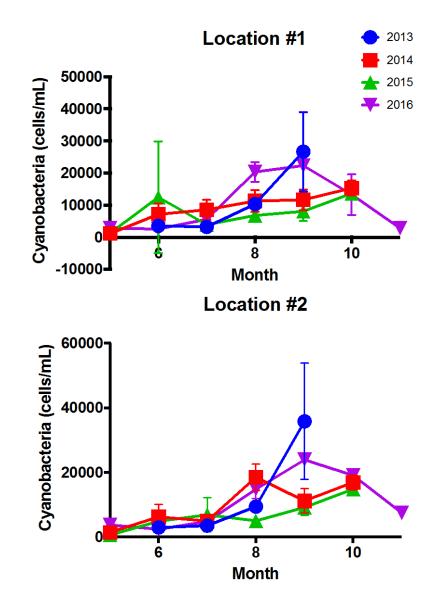
• 2 mg/L

No true lag, largest biovolume at 21 days

• 1 mg/L

- 21 day lag, largest biovolume at 28 days

Nitrate Dose:


- 2 mg/L
 - 7 day lag, largest biovolume at 21 days
- 1 mg/L
 - 7-14 day lag, largest biovolume at 21 days

Results: Summary

- High nutrient dose \rightarrow less lag time, less biovolume
- Lower nutrient dose → longer lag time, more biovolume
- Highest to lowest biovolume production
 - 1 mg/L phosphate dose N:P = 1:1
 - 1 mg/L nitrate dose N:P = 8:1
 - 2 mg/L nitrate dose N:P = 11:1*
 - 2 mg/L phosphate dose N:P = 2:1*
- Most nitrate starved yielded the highest biovolume
- *Excess nitrate yielded lower biovolume
- C:N:P \rightarrow 100:10:1

The Next Step

- Build off of preliminary experiments
- Increase volume to 1.6L
- Instead of fully-sacrificed at each time step, continuous sampling
- Initial population ~30,000 cells/mL

The Next Step

- *Planktothrix sp.* beginning and end of grow season
 - Low-light adapting, temperature
- Anabaena sp. throughout season
 - Prefer more light, warmer temperature
- 3 population compositions
 - Non-diazotrophic dominated (>80%)
 - (Planktothrix sp.)
 - Diazotrophic dominated
 - (Anabaena sp.)
 - 50:50 split

THANK YOU!