

Civil & Environmental Consultants, Inc.

Operational Challenges of a Leachate Pretreatment Plant

OWEA PLANT OPERATIONS AND LAB ANALYSIS WORKSHOP

OCTOBER 2015

PRESENTED BY: IVAN A. COOPER, PE, BCEE CIVIL & ENVIRONMENTAL CONSULTANTS, INC. (CEC)

Tasks in 14 Months

- Leachate Flow & Characteristics
- Testing
- Design Plans
- Permitting
- Interim Plan
- Final Plan Permit from POTW
- UV Transmissivity
 - Reroute Effluent to larger POTW
 New 6-mile Forcemain
 - Coordination with POTW and State for Forcemain
- O&M Plan and Staffing Planning
- Training Staff and Startup

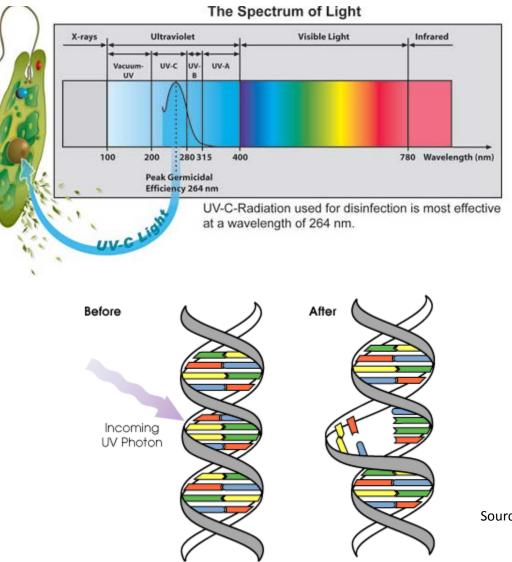
Treatment Investigation and Plan

Initially identified Storage Tanks to be converted to treatment

 4 @ 1 MG Tanks – Glass Lined vs. Epoxy Coated

Bench Scale tests

- BOD: 30,000 mg/l
- COD : 50 100,000 mg/l
- Flow: 0.2 0.4 mgd
- CaCO₃: 4,000 mg/l
- Settling
- Fly Ash for COD
- Caustic pH 5.5 to 10-11
- Biological Treatment
- Fenton's Reagent


Pilot Scale Test at Site

- Clarification
- MBR
- Sludge Dewatering
- Electrocoagulation
- Reverse Osmosis
- Thermal Oxidizer
- Scrubber
- UV Investigation

UV Disinfection at POTW

Source:UVComparison.com

UV Interference Issues

- Many POTW installing UV disinfection
- 253.7 nm effective for bacterial kill, virus inactivation
- causes adjacent thymine molecules on DNA to dimerize.
- thymine dimer defects accumulate on a microorganism's DNA
- replication is inhibited,
- Dark recombination?
 - Moderate Pressure UV reduces, but not a guarantee – WEF and EPA studies available

- UV disinfection by rendering the microorganisms harmless.
- Leachate interferes with UV
- Turbidity/Iron
- Humic substances/Fulvic substances
- As UV absorbance increases, UV transmittance decreases: %UVT = 100 x 10-A

Source:UVComparison.com

UV-T Removal Technologies

PHYSICAL TREATMENT PROCESSES

- Powdered Activated Carbon
- Chemical Precipitation
- Nano-Filtration
- Reverse Osmosis
- Electrocoagulation

ADVANCED OXIDATION PROCESSES

- Ozonation
- TiO2 Photo-Catalytic Oxidation
- H2O2-O3 Treatment
- Ferrate
- Sulfate Radical Oxidation

UV Transmittance Issues

- 65% required at POTW (some manufacturers claim disinfection at 15% UV-T)
- Biologically treated waste had 0% transmittance
- Activated sludge showed sub-65% UV-T
- Testing program to raise leachate to 65% UV-T

Sample Date	No dilution	1:100 dilution	1:200 dilution
8/29/2013	0.00%	49.20%	70.20%
9/25/2013	0.00%	40.80%	64.80%
9/30/2013	0.00%	40.60%	64.50%

Civil & Environmental Consultants, Inc.

Testing Program

Bench scale

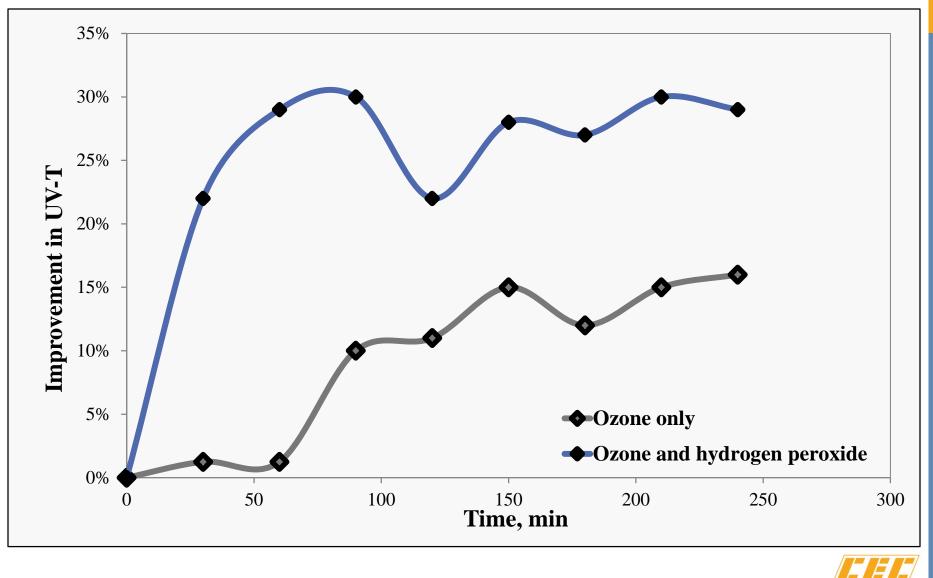
- Pilot scale treatment tests
 - at CEC,
 - other treatability labs,
 - at landfills

Leachate contained recalcitrant organics

- leachate effluents are resistant to further biological treatment (BOD/COD < 0.1)
- Test: ozone, ozone and hydrogen peroxide, Fenton's Reagent oxidation, Sulfate radical, Titanium catalyst AOP, and membrane nanofiltration
- Discarded carbon adsorption, reverse osmosis, and electrocoagulation

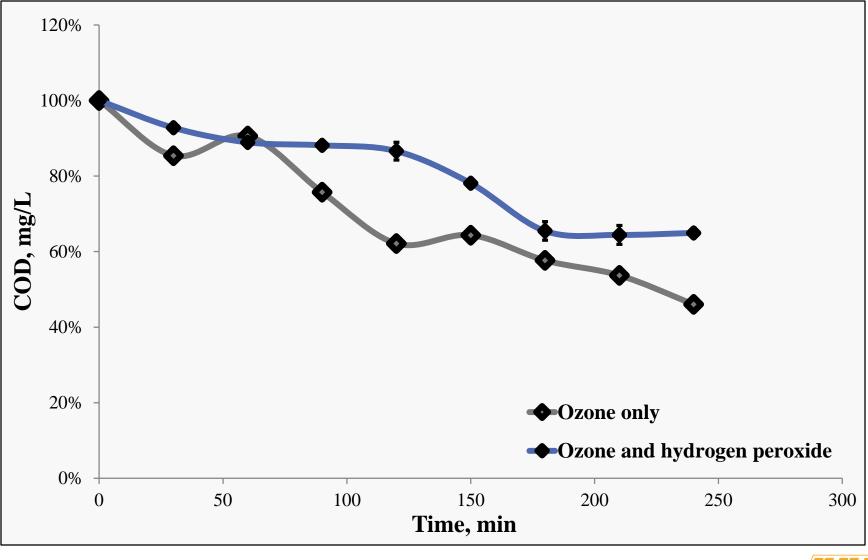
Ozone & Ozone/Hydrogen Peroxide Tests

Ozone Only - 8 L reaction column


- 9.8 O₃ gm/hr Ozone Generator
- 6 l/min rate at 98% pure delivered

Ozone & Peroxide

- 500 ml sample
- 100 ml of 3% peroxide
- Some ozone reacted with peroxide, less available for COD
- Ozone & peroxide reacts better with UV-T absorbing compounds
- Ozone alone reacts better with COD



UV-T after Ozone and Ozone/H2O2 Treatment

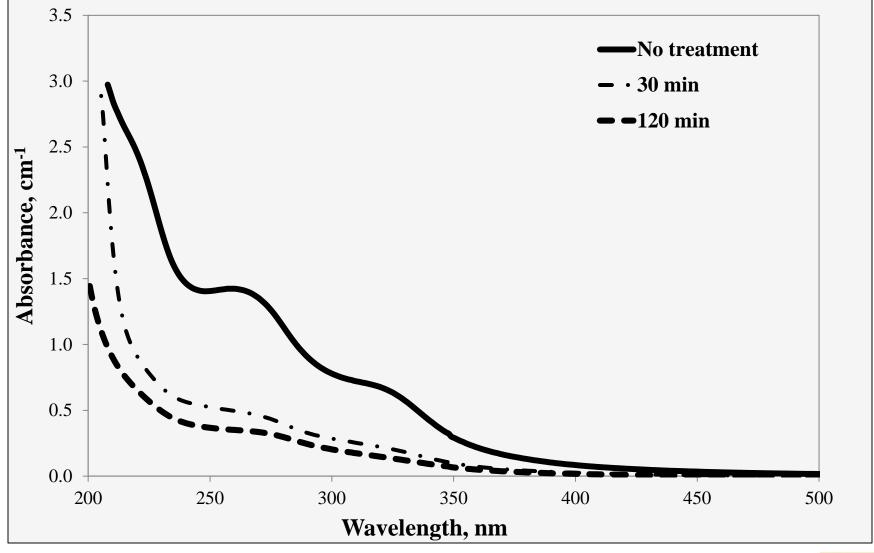
Civil & Environmental Consultants, Inc.

COD after ozone and ozone/H2O2 treatment

Civil & Environmental Consultants, Inc.

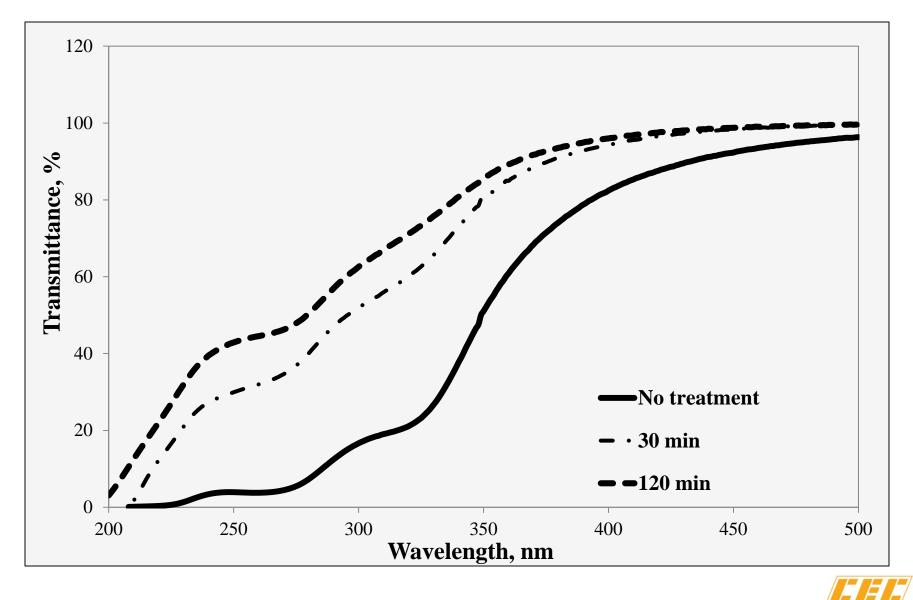
Ozone and Ozone/Hydrogen Peroxide Color Change

Color change of biologically treated leachate with various oxidants (left to right: before oxidation, with ozone only, and with ozone and hydrogen peroxide)


Fenton's Reagent Tests

Initial Application

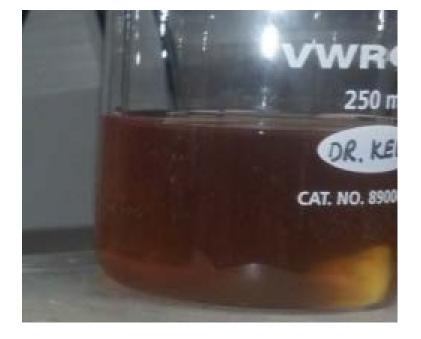
- Added 1:1 peroxide to COD
- pH 4 dropped to pH 3
- Fast drop did not allow Fe⁺² to change to Fe⁺³ by color reaction stopped
- Retested at lower peroxide (2.8 gm/l) 90% consumed
- Added caustic to raise pH to 11 & settled
- Process would require additional settling/clarification/sludge removal

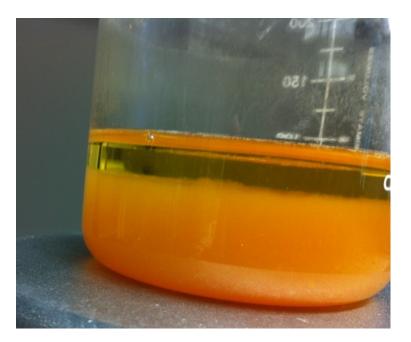


Fenton's Reagent

Civil & Environmental Consultants, Inc.

Fenton's Reagent



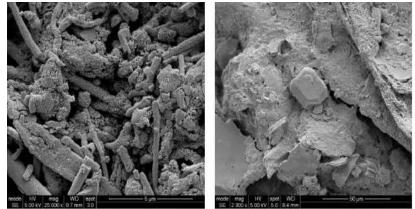

Civil & Environmental Consultants, Inc.

Fenton's Reagent Color Change

LEACHATE BEFORE FENTON'S

POST-FENTON'S LEACHATE (120 MIN REACTION TIME) AFTER 30 MINUTES OF SETTLING




Nano Filtration Tests

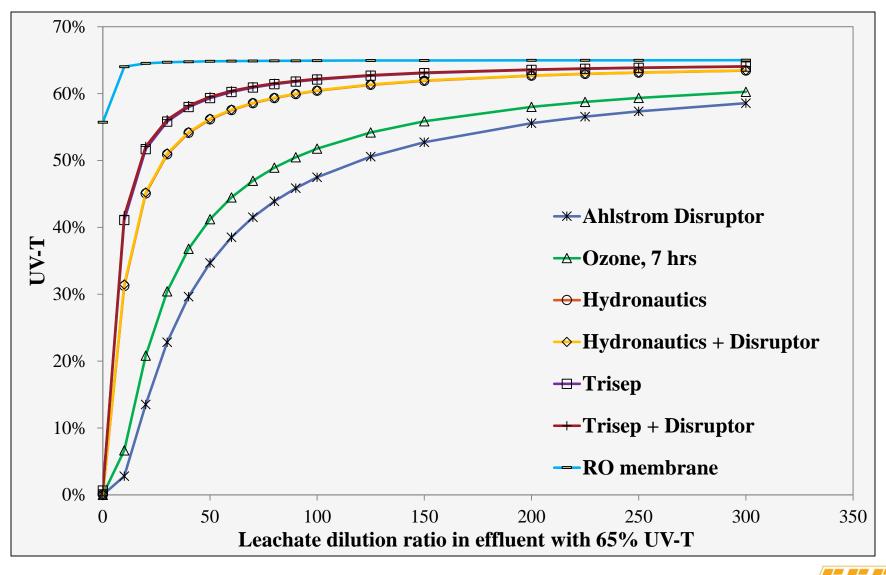
Literature - < 1,000 dalton membrane pore size</p>

- Several membranes tested
- All sub 1,000 Da
- UV-T improvement, but needs lower Da cut
- Loose RO may be required
- Reject flow and further treatment are issues
- Added Ahlstrom Disruptor[®] membrane
 - Nonwoven zeolite/activated carbon fiber pad

The scanning electron microscope image on the left is of the surface of a new sample of Disruptor with the image on the right being of Disruptor fouled with polysaccharides.

mages courtesy of Ibrahim El-Azizi, and Robert J. G. Edyvean, University of Sheffield, UK.

Nanofiltration


Comparison of leachate color before and after nanofiltration

Leachate color before and after several nanofiltration and resin steps

Membrane Alternatives

Civil & Environmental Consultants, Inc.

Site Design Considerations

- Variability Flow/Strength
- Temperature Cooling Towers / Heat Exchangers
 - Mesophilic vs. Thermophilic
- Odor Control Scrubber/RTO Collect Tank Air
- Aeration Control
- Foam Control
- Sludge Generation Rolloffs > Trailers
- Corrosion
- Scaling High calcium/magnesium
- MBR UF strainers, cleaning frequency, plugging
- Stormwater / Spill Collection
- UV Transmittance

Design Components

Equalization

Treatment Building

- Straining
- Chemical addition
- pH adjust
- Precipitation metals
- Screening/Ultrafiltration
- Chemical sludge/Biological sludge thickening, Dewatering

Aeration

Jet Aeration System – 4 tanks @ 1 MG each

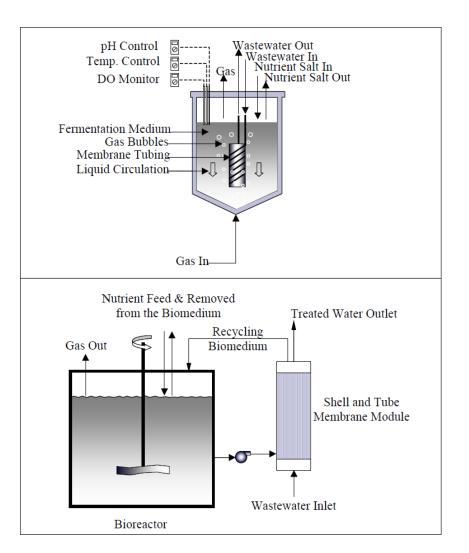
Discharge

Calcium nitrate to limit H₂S odors in discharge sewer

Activated Sludge Alternative Processes

- Numerous Types

- Oxidation Ditch
- Conventional Activated Sludge (complete mix)
- Contact Stabilization
- Step aeration
- Extended aeration
- Nutrient removal types

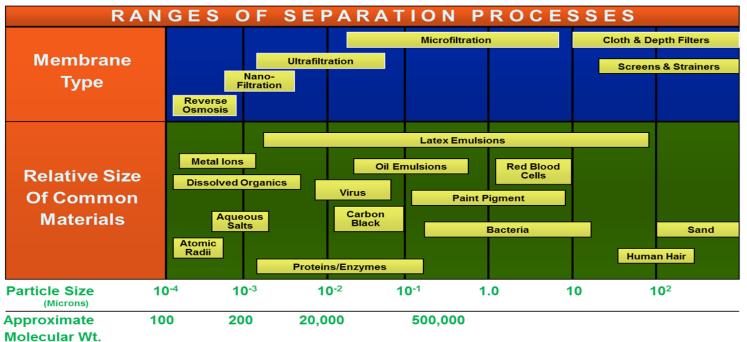

AERATION TYPES

- Diffused aeration coarse bubble/fine bubble
- Spray Aeration
- Jet aeration
- Turbine aeration
- Surface aeration

MBR Process

- Used at many landfills
- Requires aeration and membrane separation
- Aeration Required
- Sludge Production/Solids Management
- System Control by wasting, aeration
- Maintenance needed on membranes
- High quality effluent

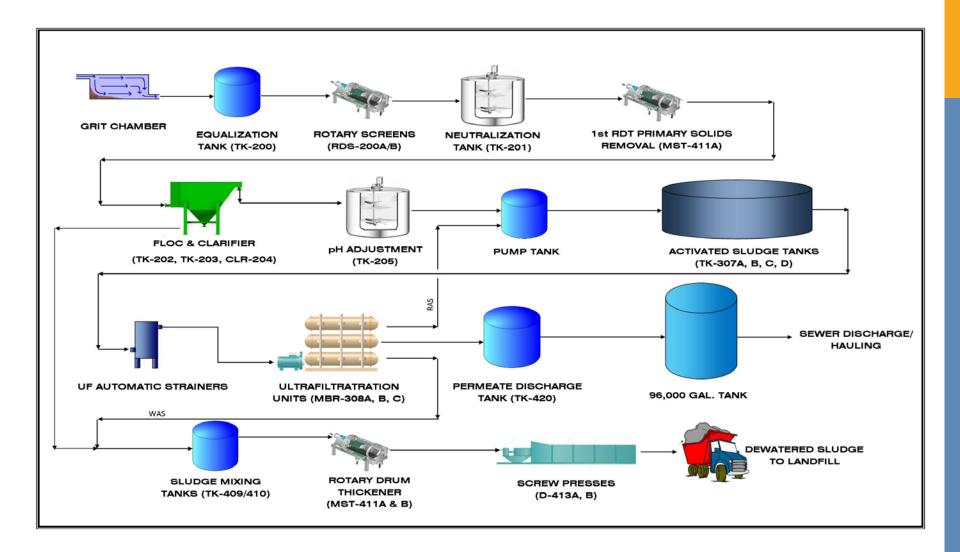
Jet Aeration


- Jet Aeration Systems Often Used for Leachate Treatment
- Needs Blowers (VFD)/External Pumps @ Fixed Speed

MBR Technology

Civil & Environmental Consultants, Inc.

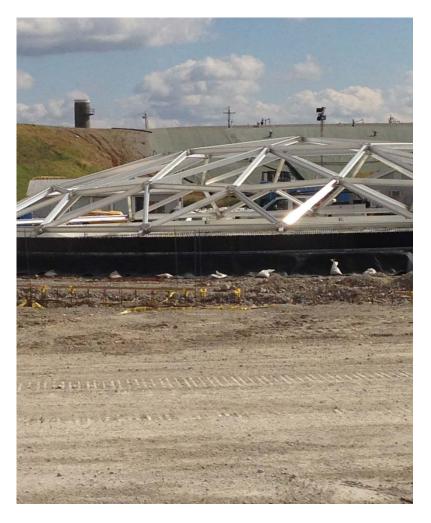
Advantages / Disadvantages


ADVANTAGES

- BOD removal high 90%
- Oxidation/Nitrification
- Biological phosphorous removal possible
- Temperature Dependent
- Very common process
- Recommend Screening first

DISADVANTAGES

- ► No color removal possibly increase by forming colored intermediates
- Nutrient removal may require several stages/ May be Land Intensive based on design
 - Heterotrophic versus autotrophic populations
- Energy intensive
- Close operation attention needed Cleaning/scale control/avoid plugging
- High WAS flows



Pretreatment Process Flow

Rapid Construction Schedule

- Start April 2013 Investigation
- Design/Construct or Construct/Design??
- CEC ID Equipment; Order; Initial CM Services, Schedule
- CEC forms team
 - Site Contractor
 - Building Contractor
 - Electrical Engineer/Contractor
 - Instrumentation Engineer/Contractor
 - Architect
 - Mechanical Engineer
- CM joins team October 2013
- Plant Startup June 2014
- CEC takes over full O&M
 - Hire 11 full time operations staff

Construction Progress – May 2013

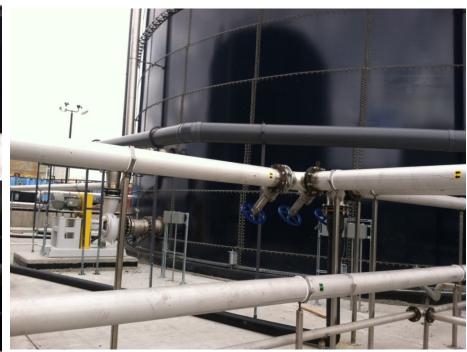
Construction Progress – June 2013

Construction Progress – Fall 2013

Construction Progress – December 2013


Construction Progress – January 2014

Construction Progress – March 2014 – Treatment Building

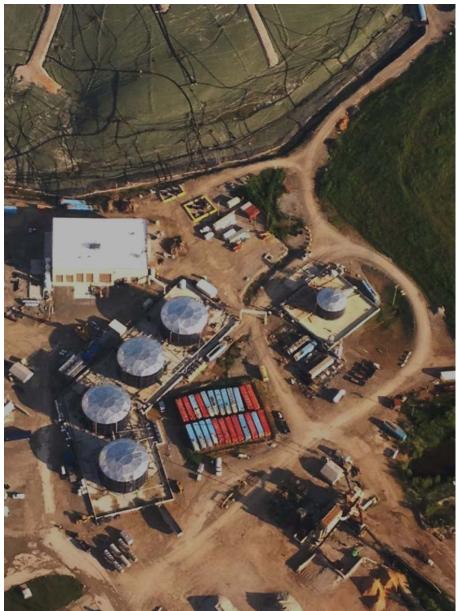


Construction Progress – March 2014 – Aeration Tanks

Construction Progress – April 2014

Construction Progress – May 2014

Construction Progress – May 2014



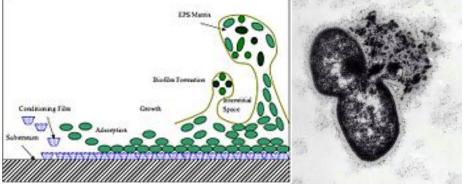
Startup – May 2014

Construction Status – June 2014

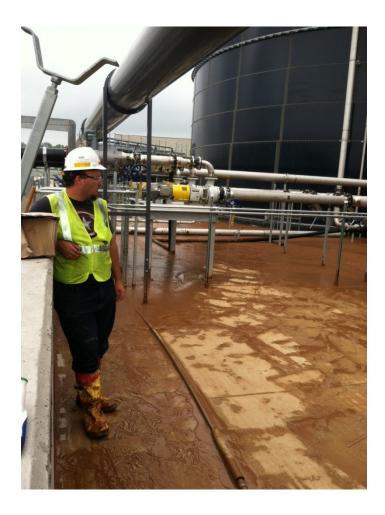
Startup – July 2014 – Process Flow

Progress – July 2014 – Solids Processing

Startup – August 2014 – We Make Sludge!



Weather & Power Outage Protection - September 2014


- Operator Training
- Foam
- Temperature
- Pump Issues
- Scaling Piping and UF
- UF EPS and SMP
 - Extracellular Polymeric Substances

 Polysaccharides
 - Soluble Microbial Products- Cell Lysis – release internal contents

Startup Challenges – September 2014

Foaming Challenges

Foaming

- High MLSS = older sludge (SRT)
- Foaming varies with f/m
- Controls:
 - Spray water = more to UF
 - Harnessing a portion of the jet mix recycle as a continuous knockdown spray;
 - Incorporating a knockdown defoamer (antifoam) injection into the continuous spray feed pipe;
 - functional foam level sensor incorporating to control the defoamer feed.

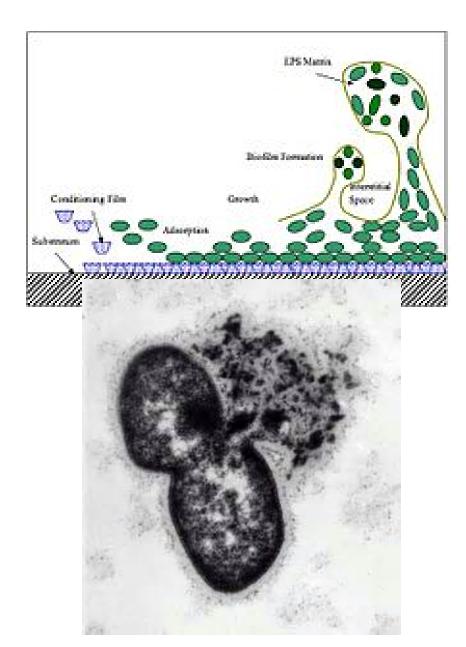
Clarifier Removes 75% solids

Clarifier Operational Issues

Inclined Plate Clarifier

- Watch effluent and sludge levels for cleaning
- Progressive cavity pumps failed and clarifier became sludge locked
- Solids carried over to aeration system
- Replaced stators EPDM with Buna –N (Coupon Tests)
- Drained clarifier and hauled off solids/washdown water

Ultrafilter Operation



External MBR Ultrafilters

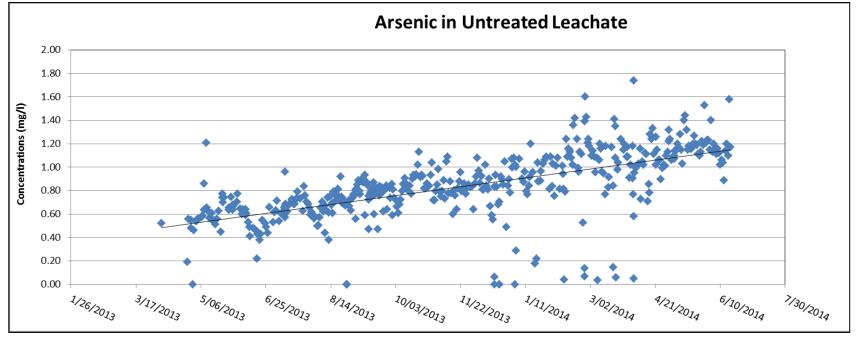
- Excellent quality effluent
- Requires monitoring pressure drop and cleaning
- Initially plant staff ran below recommended pressure drop; elements clogged.
- Additional system training helped operations
- Scale formation added soda ash addition to primary step to remove Ca hardness
- Membrane autopsy Calcium carbonate scale controlled by acid cleaning. Calcium sulfate more difficult to remove.
- Operations changed from sulfuric acid to CO₂ for pH control

Biological Fouling of UF

Currently being investigated

- Caustic clean helps remove
- UF Two biological fouling mechanisms
- Soluble Microbial Product (SMP)/Extracellular Polymeric Substance (EPS)
 - Soluble Microbial Products -Cells Lysis – release internal contents
 - Extracellular Polymeric
 Substances Polysaccharides
- Control by proper nutrients P/N/micronutrients
- SRT optimized by testing
- Calcium carbonate scale

Operations Startup - How fast can you dance??


- Design Staff started plant May-July 2014
- Hired 11 staff Summer 2014
- On-boarding process
 - Background Evaluation
 - CEC Introduction
 - Process training
 - Solids & Clarification-Chemical Feed- Hardness Scaling CT Water Treatment-MBR – Odor Control – Water Use – Effluent odor- calcium nitrate & flushing
 - Lab evaluation
 - Ex: Orthophosphate testing problems lead to nutrient deficiency
 - o Bench tests for phosphorus/nitrogen (urea) /nutrient addition
 - Testing load COD, MLSS/MLVSS, P, N, others
 - Reporting city and state
 - o Operations tracking flows, pressures, temperature, odors
 - o Software implementation
 - Spare Parts Inventory
 - Periodic and breakdown maintenance task reports- JobCal+
 - Site Safety training

Operations Challenges – Constant Improvements

- Equipment Reliability
- Increasing Leachate Concentrations
- Arsenic (Variance)
- TSS increased

- Hardness increases >Scaling
 - Soda Ash softening
- CO₂ replace H₂SO₄
- Controls (KPI)
- Odor Control

Civil & Environmental Consultants, Inc.

Effluent Acceptance by POTW

BOD:

- 30,000 mg/l
 34 mg/l
 99.932% removal
- ► COD
 - 55,000 mg/l 2,200 mg/l = 96% removal

Metals – All under limits

Metals	Permit, mg/I	Acceptance Test, mg/l
 Arsenic 	0.4	0.0529
 Chromium 	5.0	0.0298
 Copper 	2.7	0.247
- Iron	150	2.7
Lead	0.4	0.0082
 Nickel 	2.3	0.0359
 Zinc 	3.0	0.0595

Civil & Environmental Consultants, Inc.

Questions & Discussion

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. (CEC)

- IVAN A. COOPER, PE, BCEE: ICOOPER@CECINC.COM