

To improve the quality of life through our environmental services

Water Environment Association

Preserving & Enhancing Ohio's Water Environment

Wastewater Key Performance Indicators

Proof of Efficiency

Kevin Krejny June 24 11:00 AM

Why am I doing this talk?

On Key Performance Indicators (KPIs)

- To save you time, effort and \$\$\$
- Understand ways to use your plant data as KPIs that show operational trends
- Get to measures that will help you save your rate payers money
- After 4 years of energy savings talks, changing gears to new topic. That uses energy usage as a main component.

Talking Points

- What are Key Performance Indicators (KPIs)
- KPI Faults/Troubles one size does not fit any
- Verifying KPIs
- Setting a Benchmark with KPIs
- Using KPIs to show trends (good or bad)
- Specific Wastewater KPIs examples

And everyone uses them differently

Key Performance Indicators *WHY DO YOU NEED THEM? Book Answer*

Once an organization has analyzed its mission, identified all its stakeholders, and defined its goals, it needs a way to measure progress toward those goals. Key Performance Indicators are those measurements. My Answer

Streamline operations and document using rate payers money in a responsible manner

BAD KPIs Examples

Where to begin?

Where to begin, where to begin...

Customer Satisfaction

 Result
 Target
 Calculation

 95.9%
 >80%
 Customer Surveys' and Focus Groups

No Survey's performed in 2011

BAD Because

- Subjective nature of "satisfaction"
- Looks like scale changed
- Missing a year or two
- Target >80% of what
- Customer satisfaction is pretty vague
- Can change with public perception and not reflect actual performance of group

Number of Water Main Breaks per 100 Miles

<u>Result</u>	<u>Target</u>	Calculation
19.9	43.6	100 x total breaks / 1300

A measure of the condition of the water distribution system as a total of number of breaks per 100 miles of distribution piping.

Be Leary Because

- Weather related You are not NOAA
- OK to use to document WMB/Infrastructure
- Target based on? Average OH winter freeze/thaw and infrastructure condition (age)- NO WAY
- Also bad for weather reason
 - MGD flow to WWTP
 - Plus KPIs associated with MGD flow to WWTP
 - kWh/MGD much better
 - % I & I of WW flow cracks in pipes leaks in system do not change YTY or MTM
 - SSOs per mile

Water Reclamation NPDES Violations from EPA reports

The number of permit violations that are reported to the Ohio EPA.

Targeting Zero

- If you are targeting zero violations, and this is your main KPI, you will never try to run your plant more efficient- Hence no need for KPIs
- Zero Target will promote robot operators and over treatment in operations that will cost \$\$\$
- Wasting electricity and chemicals is guaranteed

North & South Planned Maintenance Ratio (hours)

NYSERDA Wastewater Benchmarks

Size Category	Activated Sludge (kWh/MG)	Fixed Film (kWh/MG)	Lagoons (kWh/MG)
< 1 mgd	4,100	3,600	6
1 mgd to 5 mgd	1,340	1,380	
5 mgd to 20 mgd	1,570	1,140	
20 mgd to 75 mgd	1,630	1,060	Seames -
>75 mgd	1,070	-	

Size Category	Activated Sludge (kWh/lb BOD)	Fixed Film (kWh/lb BOD)	
< 1 mgd	4.1	3.3	Per
1 mgd to 5 mgd	2.2	1.1	
5 mgd to 20 mgd	1.7	1.0	
20 mgd to 75 mgd	1.3	1.2	
>75 mgd	2.0	-	

Source: Statewide Assessment of Energy Use in New York Water and Wastewater Sector, NYSERDA 2008.

AWWA Utility Benchmarking 2013 Data Set and Report for

Dedicated to the World's Most Important Resource"

Montgomery County Environmental Services

Participant Overview

Operational Summary						
Water Only	33					
Wastewater Only	11					
Combined Operations	80					
Total Participants	124					

Regional Summary	/			Population Summ	ary		
Region 1 - US Northe	ast	Region 4 - US We	st	0 - 10,000		100,001 - 500,0	00
Water	3	Water	13	Water	7	Water	14
Wastewater	2	Wastewater	4	Wastewater	2	Wastewater	5
Combined	4	Combined	15	Combined	2	Combined	39
	9		32		11		58
Region 2 - US Midwe	st		ı	10,001 - 50,000			
Water	8	TOTAL	121	Water	5	More than 500,	,000
Wastewater	3		·	Wastewater	0	Water	14
Combined	14			Combined	15	Wastewater	5
	25				20	Combined	39
Region 3 - South	••			50,001 - 100,000	· · · · · ·		58
Water	9			Water	1		
Wastewater	2			Wastewater	0	TOTAL	123
Combined	44			Combined	10		
	55				11		
	LI						

Problems with External Benchmarking

There are lots of factors that make your utility unique. *Do not* waste your time comparing yourself to others that might be similar. They are not.

Here are a few of the many reasons why?

Regional Weather

- Many different climates in the US
- Wet areas, dry areas, harsh winters, mountains, depth to water, storm events (inflow and infiltration), Combined sewer systems

Population Density

- Various population settings
- Urban, suburban, rural, size of watershed, growing cities, dying cities, manufacturing bases

Socioeconomically

- This is a financial based comparison
- Cost of living
- Price of energy, chemicals, labor
- Union vs. non-union labor
- Employee retirement systems
- Age of the workforce
- New infrastructure vs. old infrastructure

Permit Limits

- Nitrogen limits
- Phosphorus limits
- Seasonal Limits
- Discharge locations and discharge bodies of water

Benchmarking

- Compare yourself to your old self, your current self and your future self!!!
- Find historical trends of operations, set yearly goals, and keep improving each year until your trend lines plateau
- Trend before and after known changes to verify changes are for the better

What do Good KPIs need?

- Need to be quantifiable numbers
- Need to be in units that do not change
- If using dollar amounts need to be consistent over time (commodity swings not representative)
- Need to use Consumer Price Index (CPI) to standardize dollar amounts over time
- Need to be in units that are easy and consistent to measure over time
- Hopefully data you have historically

SMART

S – Specific purpose for the organization

M- Measureable

- A- Achievable what does this mean?
- R-Relevant to success of organization
- T- Time for a predefined and relevant period

Cited in numerous sources

Time Period

- At least a month (average daily results) to show noticeable trends
 - Electric bills monthly
 - eDMR monthly (permit)
 - Bacteria take 2-3 weeks to grow (see changes)
 - Financial reports monthly
- Quarter or yearly too long to wait to see changes or comparisons

So I recommend monthly KPIs

Pounds Matter

- Pounds formula a must
- Concentrations change daily, need to convert to pounds
- Ohio high flow vs. low flow cannot be compared in concentration
- Diurnal swings cannot be compared in concentrations

See example

Example #1

Proof of Technology Upgrade Performance Possible Future KPI to chart aeration basin operations

Aeration Basin Upgrade Proof

10 month side-by-side comparison

			Jet Aeration Tanks				Fine Bubble Tanks		
		Aeration							
	lbs solids in	Flow	average	30 min	ammonia			30 min	ammonia
MLSS	aeration	MGD	cfm	Settle	(mg/l)	SVI	Average cfm	Settle	(mg/l)
3206	89127	16.2	3048	281	2.65	88	2026	270	1.70

% less	33.5%	3.9%	36.0%

Example #2

Minimize disinfection chemicals and meet *e coli* permit limits 189 weekly/ 126 monthly #/100 ml

Pounds of Chemical per Month

Does not show much improvement

Let's use KPI: lbs chemicals/MG flow

2012→2013 24% reduction

 $2013 \rightarrow 2014$ another 15% reduction = 35% reduction in 2 years

MONTGOMERY C O D R T Y

Veare

Example #3

Dramatic increase in pumping efficiency Air Relief Valve Replacement

Example #4

Minimize aeration needed to treat pollutants to permit limits Ammonia, TSS, cBOD

kWh per pound TSS

kWh per pound ammonia

Aeartion kWh/lb cBOD

Wastewater KPIs

- O & M Expense per month
- Aeration kWh per pound of cBOD treated per month (WR)
- kWh per pound of cBOD treated per month
- % Emergency Maintenance work per month
- Pounds of disinfection chemicals per MG per month
- kWh per MG pumped at Pre-Treatment (PTP)
- pounds of ferric chloride per pounds of Total Phosphorus removed per month
- Biosolids costs per month (pressing +disposal)
- kWh per pound of ammonia treated per month
- kWh per pound of TSS treated per month

Sources of Information and Ideas

- <u>http://en.wikipedia.org/wiki/Performance_indicator</u>
- <u>http://www.pwc.com/gx/en/audit-services/corporate-</u> reporting/assets/pdfs/UK_KPI_guide.pdf

#1 BESTSELLER THREE MILLION COPIES SOLD

Why Some Companies Make the Leap ... and Others Don't

JIM COLLINS CANNET AT THE BEALTER

ESSENTIAL STRATEGIC KEY PERFORMANCE INDICATORS

UTILITIES

Using the PuMP Blueprint for Fast, Easy, and Engaging KPIs STACEY BARR

C O U R TY

Questions Now

Or Later Kevin Krejny <u>krejnyk@mcohio.org</u>

