Using Acoustic Inspection to Prioritize Sewer Cleaning

George Selembo, PhD, PE

June 24, 2015

PRESENTATION OUTLINE

Acoustic Inspection Overview

Acoustic Inspection Economics

Case Studies

Conclusion

WHAT IS THE PROBLEM?

Overflows are a Symptom – Not the Problem

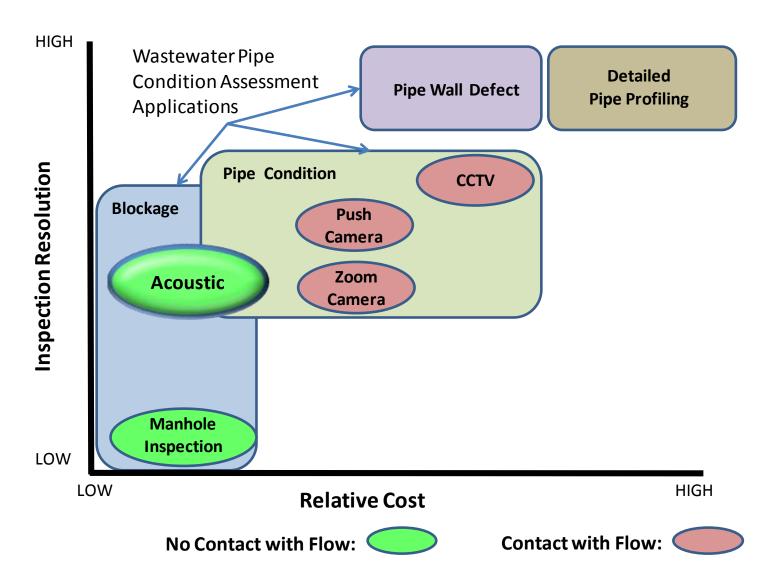
PROBLEM: INFORMATION

- Cleaning a pipe costs about the same as inspecting a pipe
- >80% of pipes less than 12", accounts for >90% of SSOs
- Historical GIS Helpful But Insufficient
- Where & When to Deploy Cleaning Resources
- Cost Effective & Timely Condition Information

INSPECTION METHODS

Manhole Inspection

Zoom Camera



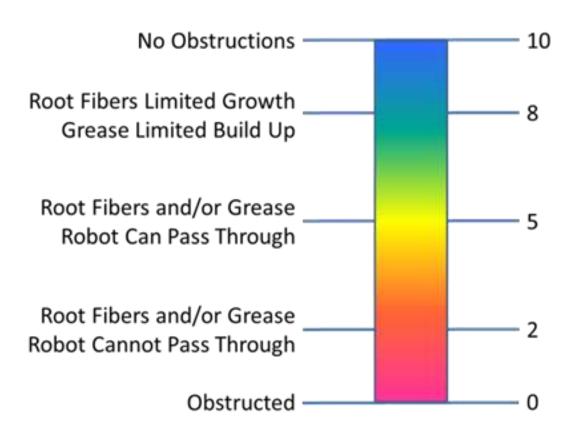
Push Camera

- CCTV/Robotic Camera
- Pipe Wall Defect Scanners
- Pipe Profiling / Robotic Multi-Sensor

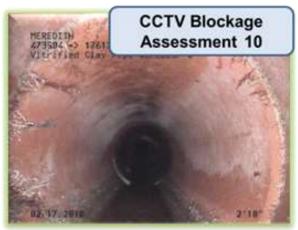
INSPECTION METHODS

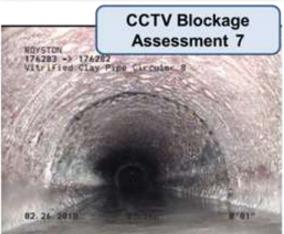
ACTIVE ACOUSTIC PIPE INSPECTION BACKGROUND

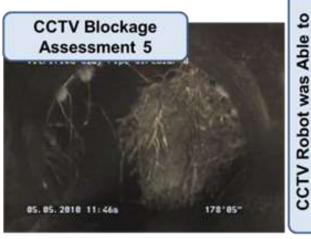
- Patented technology
- Gravity-fed sewer focus
- Developed in Charlotte with CMUD as key partner



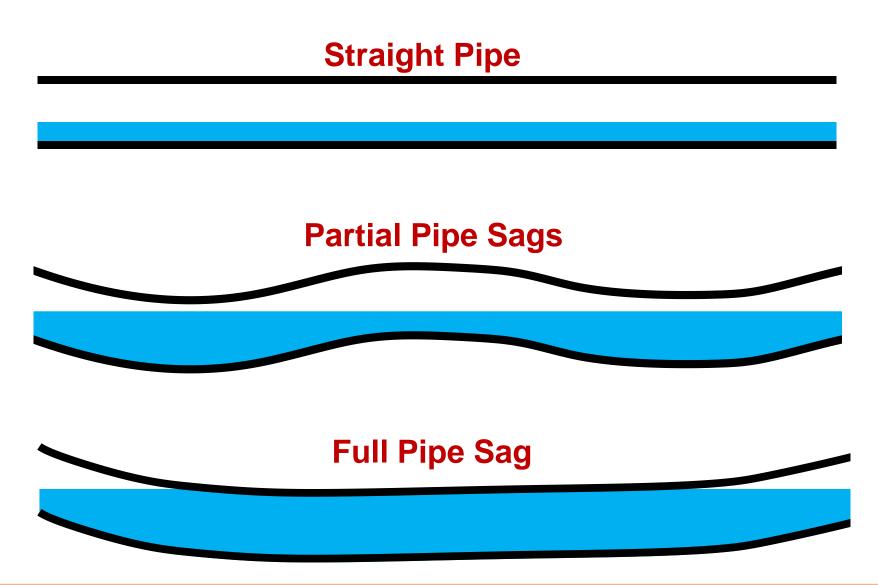
- Over 20M feet inspected
- Rapid assessment helps better focus cleaning and CCTV resources


How Does it Work?




Scoring System

Scoring System



Pass Through Root Fibers

- What acoustic inspection does NOT tell you:
 - Type of blockage
 - Could be one big thing, or a lot of small things
 - Aggregate score of entire pipe segment
 - Location of blockage
 - Presence of small structural defects (fine cracks, joints, etc.)

IMPACT OF PIPE SAGS

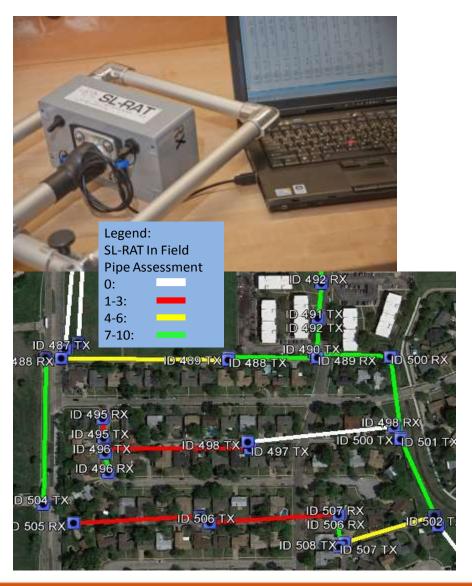

IMPACT OF PIPE DIAMETER

Comparison of open surface area at various pipe diameters

Assume pipe is ¼ full with flow, obstruction is 18 sq. inches

Diameter	6 inches	10 inches	18 inches	24 inches
Total surface area (sq.in)	28.3	78.5	254.5	452.4
% blocked	89%	48%	32%	29%

IMPACT OF PIPE DIAMETER


- At larger diameters, more surface area available for sound to travel through and around blockages
- Roots, FOG, and other obstructions still reflect and absorb sound
- Acoustic inspection is still viable, but may need to be more conservative on acoustic values at larger pipe diameters
- Should focus on pipe diameters 6"-12", especially when first using the technology

KEY FEATURES OF ACOUSTIC INSPECTION

- No Flow Contact / No Confined Space Entry
- Simple to use train operators in minutes
- Low Cost—Pennies/foot
- Rapid Onsite Results Under 3 min./segment
- Portable < 30 lbs
- GIS Integration GPS Enabled
- Archive Pipe Segment Blockage Assessments

HISTORICAL ARCHIVE – SL-DOG

- Sewer Line Diagnostic
 OrGanizer SL-DOG
- Convert Assessment Data to Actions
- Better Scheduling of Cleaning Activities
- Better Management of Inspection Activities
- Improve Collection Cleaning Effectiveness

ACOUSTIC INSPECTION APPLICATIONS

- Focus Cleaning Effort Reduce Cleaning by Over 50% and Enable Condition Based Maintenance
- Eliminate Repeat and Downstream Overflows
- Post Cleaning Quality Assurance
- Quick Collection System Condition Assessments When Taking Over New Areas

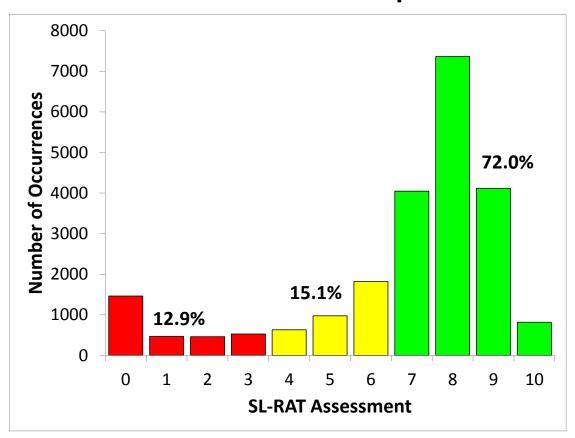
ACOUSTIC INSPECTION ECONOMICS

- In order for rapid pipe inspection to be economical, two conditions must be satisfied:
 - Substantially cheaper than current inspection methods
 - Significant number of pipes do not require immediate attention

COST EVALUATION

SL-RAT Acoustic Inspection Cost

- U.S. EPA Study (June 2014) \$0.149/ft
- Less than 1/10th the cost of CCTV inspection cost performed in same study
- Cleaning cost is typically \$1.00/ft



EPA Study available for download at:

http://nepis.epa.gov/Adobe/PDF/P100IY1P.pdf

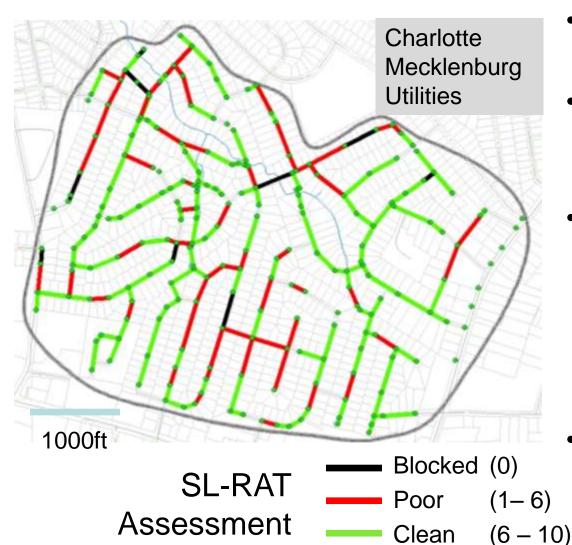
HOW MUCH CLEANING IS WASTED?

Acoustic Inspection Results ~6 Million Feet of Pipe

- Target Historical Problematic Areas
 - >70% PipesEssentially Clean
 - <10% Need Immediate Action
- Cleaning a Clean Pipe ⇒
 Wastes Resources
- Not Cleaning a Dirty Pipe
 ⇒ SSO

FINANCIAL IMPACT

- Assumptions:
 - Cleaning cost is \$1.00/ft
 - Acoustic inspection cost (SL-RAT) is \$0.15/ft
 - Inspect 10,000 linear feet of sewer pipe per day (using acoustic inspection)
 - 50% reduction in cleaning


FINANCIAL IMPACT (cont'd)

- Upfront equipment cost ~\$25,000
- 10,000 ft/day of inspections → 50,000 ft/week
 Acoustic operating cost \$7,500/week (@\$0.15/ft)
- Cleaning reduction (50%)
 25,000 ft/week → \$25,000/week (@\$1.00/ft)
- PAYBACK PERIOD of LESS THAN TWO WEEKS

CASE STUDIES

- Charlotte, NC
- Augusta, GA
- Virginia Beach, VA
- METRO Nashville, TN

CHARLOTTE, NC

- Goal: Improve Cleaning Efficiency
- Approach: Acoustic Inspection Directed Cleaning
- Effectiveness:
 - 52,000 ft Basin
 - 30,000 ft Assessed by SL-RAT as "Clean"
 - 22,000 ft Below Threshold& Cleaned
- 58% Cleaning Reduction

CHARLOTTE, NC

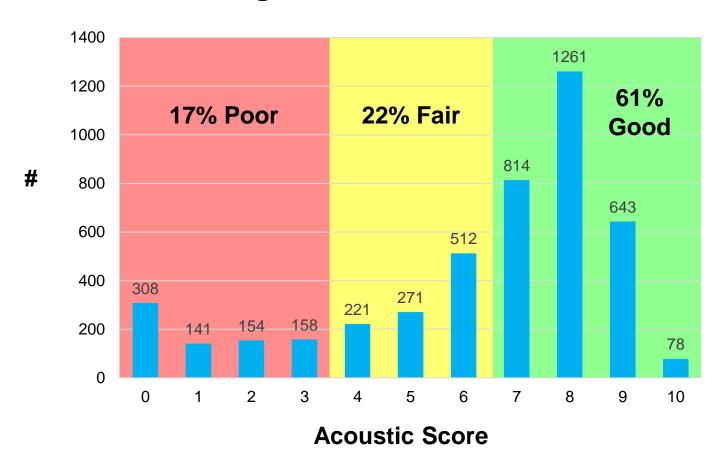
"You can see immediately what needs to be cleaned, so it takes the guesswork out and focuses your efforts." – CharMeck Engineer

- Goal: Prep Downtown
 Charlotte, North Carolina prior
 to DNC
- Approach: Use SL-RAT to quickly identify/prioritize cleaning needs for crews
- Effectiveness:
 - 2 SL-RAT crews inspected
 143k ft of pipe in ~ 2 weeks
 - Saved \$100k + versus traditional approach
 - Focused on 10-15% of pipes that are the most blocked & prioritized the remainder

AUGUSTA, GA

- Founded 1822
- Combined operations with Richmond County in 1996
- Population Served 190,000

- 1,040 miles of sewer pipe
- Covers 280 square miles
- Under GA EPD Consent Order


AUGUSTA, GA

- Using SL-RAT since February 2013
- Currently using 3 devices
- 20,000 segments inspected
- Over 5 million feet of pipe (950 miles)

AUGUSTA, GA

Histogram of Acoustic Scores

VIRGINIA BEACH, VA

- 1,200 miles of gravity sewer mains
- "Hot Spot" program created in 2006 to reduce SSOs
- Cleaning cycles range from 30 days to 1 year
- Current program includes 813,000 ft
- 68,000 ft need cleaned per month


VIRGINIA BEACH, VA

- 4 month pilot study
- 62 segments
 (30, 60, 90 day cycles)
- Total of 112 inspections performed

VIRGINIA BEACH, VA

"Hot Spot" Pilot Study Histogram of Acoustic Scores

METRO – NASHVILLE, TN ACOUSTIC PROJECT

- METRO under consent decree by EPA
- Bio-Nomic
 Services/Ace Pipe has
 inspected over
 4,000,000 ft. since
 2013
 - Expected 15 million ft. by 2017
- 6 Acoustic crews running daily
 - Averaging 50-70K ft. per day

METRO – NASHVILLE, TN ACOUSTIC PROJECT

- SSO's down an estimated 60%!
- Approximately 4,000,000 feet tested to date
 - 10% scored 5 or lower
 - 90% scored 6 or higher
 - Less than 1% received a score of zero
- CCTV dollars saved: At \$1/ft = \$3,600,000 savings
- In one month crews were able to test 800,000ft of pipe.
- Found an absolute need for GIS tracking and 3 tier data validation. GPS/TimeSheets/Maps
- CCTV 4M' @ 2000' per day, 2 crews = 4 years

APPLICATION OF ACOUSTIC INSPECTION

Application Area	How to Use Acoustics		
Pre-Cleaning Assessment	Prioritize/focus cleaning often see >50% cleaning reduction – "focus on cleaning the dirtiest pipes"		
Condition Surveys	Quickly & economically assess large areas for asset management & planning		
Cleaning Interval Determination	Only clean specific segments when below blockage threshold		
Post-cleaning QA	Low-cost method to check cleaning effectiveness and prevent downstream SSO's		
Optimize SSES Contract Resources	Use acoustics to prioritize pre-cleaning & camera resources for contract advantage		
Performance-Based Contracting	Use acoustic inspection to enable SSO targets in cleaning/inspection contracts		
Condition Based Maintenance Program	The "holy grail" – economics of acoustics enables a CBM strategy to focus maintenance activity		

QUICK HITS

FULL POTENTIAL

CONCLUSION

- Inspection is much Cheaper than Cleaning
- Acoustic Inspection is an Effective Method to Make Blockage Assessments
 - Quick
 - Cheap
 - Easy / Safe
- Acoustic Inspection Enables CBM Capability
- Acoustic Inspection Does Not Replace Cleaning or Detailed Inspection
 - Helps Determine how to Effectively Deploy Cleaning and CCTV resources

QUESTIONS?

877-PIPECHK (877-747-3245) gselembo@infosenseinc.com www.infosenseinc.com

