

Wisconsin Case Studies: Using Rare Earth Chloride to Reduce Phosphorus to Ultra-Low Limits

By: Joseph Carlston Product Development Scientist

Date: 24 June 2015

Discussion Outline

Rare Earth Technology Introduction

- What are rare earths?
- Rare earths vs. traditional P removal

Preliminary Lab Studies

• Plant Trials

- Equipment Set-up
- Facility processes
- Trial results
- Conclusions / Summary

- Rare earth elements are located in the lanthanide series (plus Sc and Y) of the periodic table
- Most prominently known for high strength, permanent magnets
- Unique reactivity with oxyanions, such as phosphate

1 H																		2 He
3	4												5	6	7	8	9	10
Li	Be												В	C	N	0	F	Ne
11	12												13	14	15	16	17	18
Na	Mg	F											AI	Si	P	S	CI	Ar
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca		Sc	1	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Z	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56		71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	×	Lu	Hf	Та	w	Re	Os	lr -	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	*	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	*	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
		4																
		1.1	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
		*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb		
		*	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
		*	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
																		(9 7)

Typical Rare Earth Markets

Rare Metals

✓ Aerospace

✓ Catalysts

✓ Electronics

✓ LED Lighting

✓ Lithium Batteries

✓ Phosphors / Displays

 \checkmark Solar Power Cells

✓ Super Alloys

✓ Superconductivity platforms

✓ Wireless
 Communications

4

Uses for Lanthanum & Cerium

Traditional Markets

Glass Polishing

Hybrid Vehicle Batteries

Catalytic Converters Advanced Optics

Emerging Markets

Recreation Water

Wastewater

Why RE is different than traditional coagulants

- Precipitate is
 CePO₄ (Rhabdophane)
- Forms ionic bonds
- Preferentially reacts with phosphorus
- Achieves a 1:1 molar ratio of Ce:PO₄

- Forms Fe/AlOOH and Fe/Al(OH)₃ intermediates to adsorb P
- Phosphate adsorbs on the surface of the floc (surface chemistry)

- Rare earth chloride solution
- Active Ingredient: Cerium Chloride (CeCl₃)
 Concentration: 31.5%
- Density: 12.4 lbs/gal
- Freezing Point -40°C
- pH: 3.5
 Non-hazardous rating

• Compatible with existing equipment

Rare Earth Performance Unaffected by Temperature

Temperature (°C)	Molar Ratio REE:P	RECl₃ Dosage (ppm _v)
5	0.83	7
20	0.80	7
40	0.85	7

- Sample tested: Secondary clarifier effluent
- Phosphorus Level: Spiked to 2 mg/L PO₄-P using NaH₂PO₄
- Treated with $CeCl_3$ at volumetric dose rate of 50 ppm_v
- Filtered and unfiltered samples submitted for acute whole effluent toxicity testing

	Wate	r Flea	Fathead Minnow			
	Filtered	Unfiltered	Filtered	Unfiltered		
NOEC Value	100	100	100	100		
LC ₅₀ Value	>100	>100	>100	>100		
TU _a Value	< 1.0	< 1.0	< 1.0	< 1.0		

- Samples Tested:
 - Secondary clarifier effluent (spiked to 2 mg/L PO₄-P)
 - Centrifuge centrate (117 mg/L PO_4 -P)
- Treated with $CeCl_3$ at dose rates of:
 - 50 ppm_v for secondary clarifier effluent
 - 3,000 ppm_v for centrifuge centrate
- Unfiltered samples submitted for extraction testing via CalWET procedures

Contaminants	Secondary Clarifier Effluent	Centrifuge Centrate		
Fluoride	0.91 mg/L	1.5 mg/L		
Inorganics:				
Sb, As, Ba, Be, Cd, Total				
Cr, Hex. Cr, Co, Cu, Pb,	BDL	BDL		
Hg, Mo, Ni, Se, Ag, Tl,				
V, Zn				
Pesticides	BDL	BDL		
Polychlorinated	BDL	BDL		
Biphenyls	BBL			
Herbicides	BDL	BDL		
Volatiles	BDL	BDL		
Bases/Neutrals/Acids (Semi-volatiles)	BDL	BDL		

Field Trials – Equipment Set-up

- 45 MGD municipal WWTP in Mid-Atlantic US
- Total phosphorus limit of 0.18 mg/L P
 - Target of 0.10 mg/L P
- Interested in seeking new coagulant with lower consumption rate, less chemical solids produced, and less staining of UV

16

 $CeCl_3$ maintained phosphorus below limit with dosage rate 3x less than FeCl_3

Case Study

- Ferric usage: $34 \text{ ppm}_{v} = \text{molar ratio } 3.4:1 \text{ Fe/P}$
- CeCl₃ usage: 11 ppm_v = molar ratio 0.7:1 Ce/P

- 2 MGD municipal WWTF located in Wisconsin
- Total P limit of 1.0 mg/L
 - New limit of 0.075 mg/L being enacted
- Used ferrous chloride (FeCl₂) for chemical P removal
- Was unable to meet new TP limits with iron coagulant

- $CeCl_3$ maintaining ave. effluent TP < 0.03 mg/L with dose rate of 120 GPD
- Historical ferrous usage required 125-250 and only reduced TP to ave. of 0.5 mg/L

- 6-8 MGD municipal WWTF located in Wisconsin
- Total P limit of 1.0 mg/L
 - Future permit as low as 0.04 mg/L TP
- Used aluminum sulfate $(Al_2(SO_4)_3)$ for chemical P removal
- Unable to meet new TP limits with alum

Rapid Coagulation Performance

Mixed Liquor sample - settling

Initial 1 min 2 min 4 min 5 min 10 min

Fast Response Time

Plant Effluent – from 3.6 mg/L-PO4 to 0.6 mg/L-PO4 in 48 hours

- Achieved average of 0.15 mg/L TP in effluent for month of December with average of 50 $\rm ppm_v~RECl_3$ dose
- Maintained average effluent TP at 0.6 mg/L with 200 GPD of RECl₃ compared to historical dose of about 700 GPD total chemical dose

• Average final sludge total solids increased from 25% to 29%

Observed Benefits of Rare Earth Technology

- Able to achieve very low TP discharge limits without capital equipment
- Reduced sludge volumes compared to competitive coagulants
- Faster coagulation and noticeable impact than competitive coagulants
- Less coagulant volume required to reach low phosphorus limits
- Improved water clarity due to good coagulation properties
- ✓ Will not stain or discolor facility structures or equipment
- Compatible with existing dosing and filtration equipment
- Rated non-hazardous for DOT regulations

- City of Hartford, WI WWTP Dave Piquett
- City of Fond du Lac WPCP Jeremy Cramer, Autumn Fisher & team
- Mulcahy Shaw Water
- Ruekert & Mielke, Inc. Dave Arnott
- Strand Associates Jane Carlson, Troy Larson

Pam Cornish <u>PCornish@molycorp.com</u> 734-216-2089

Joseph Carlston JCarlston@molycorp.com

