Using Existing Infrastructure at the LeSourdsville WRF to Increase Wet Weather Capacity

June 24, 2015

Same Old, Same Old?

AND EXHIBITION

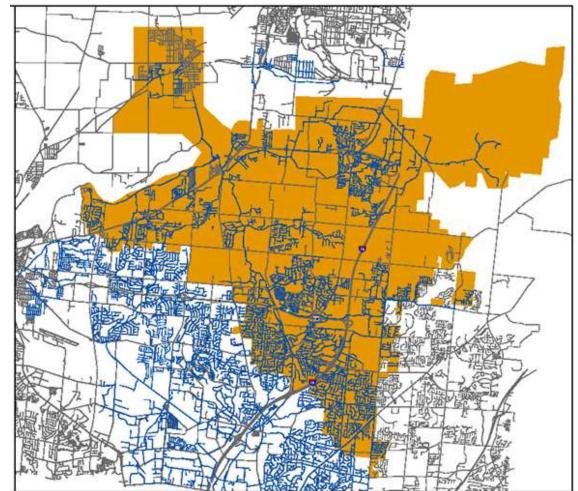
2015 TE

Tony Farina, PE

LeSourdsville WRF History

- Original 4 MGD plant constructed in 1974
 - RBCs, tertiary filtration, chlorine disinfection
- Expansion to 6 MGD in 1989
 - 2 MG oxidation ditch added
- Solids improvements in 1992
- Expansion to 12 MGD in 1994
 - 5 MG oxidation ditch, final clarifiers and UV added
- Centrifuge added in 2003

CHNICAL CONFERENC



Collection System Master Plan

- Completed in 2007
- Estimated future growth up to buildout
- Estimated peak flows from 2, 5 and 10-year storms

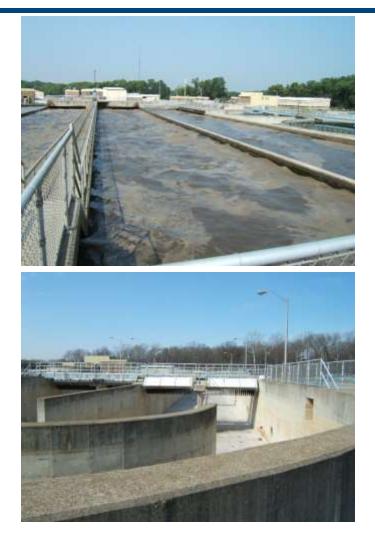
Environmental Engineers & Scientists

WRF Master Plan

- Goals:
 - Address reliability and redundancy
 - Plan for future growth and more stringent effluent limits
 - Increase wet weather capacity
 - Evaluate biosolids options
 - Evaluate non-process facilities
- Completed in 2008
- Recommended phased improvements

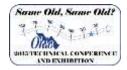
Prior Configuration

- RBC train taken out of service
- Limited influent pumping capacity (32 MGD total)
- All flows through screening and grit removal with limited capacity



Prior Configuration

- Large oxidation ditch provided majority of biological treatment
 - Small oxidation ditch used only for wet weather and during maintenance of large ditch aerators
- Limited clarifier capacity
- Limited RAS pumping capacity and redundancy



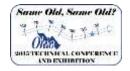
Condition	Annual Average Capacity (MGD)	Peak Secondary Capacity (MGD)	Peak Influent Capacity (MGD) ¹
2008	12	32	32
Near-Term	15	36	70
Future	18	54	100
NOTEO			

NOTES:

¹ Desired peak influent capacity based on collection system modeling for 6 hr simulated storm event.

Wet Weather Flow Management

- Evaluated combination of flow EQ and optimizing secondary treatment for wet weather
- Considered two alternatives for flow EQ:
 - New flow EQ tanks (prestressed)
 - Convert oxidation ditches to flow EQ


Wet Weather Flow Management

• Estimated EQ storage volumes based on collection system modeling:

Annual Average	EQ Storage Volume (MG)		
Capacity (MGD)	2-Year Storm	5-Year Storm	
12	2.5	9.0	
15	3.1	11.7	
18	3.5	13.1	

NOTES:

¹ Volumes determined based on assumed hydraulic capacity of secondary treatment of three times annual average capacity and 6-hour storm. 18 MGD volumes estimated based on extrapolating values for 15 MGD condition.

Wet Weather Flow Management

- Compared estimated construction costs: new EQ tanks approx. 3X converting existing oxidation ditches
- First convert large ditch (5 MG)
- In future, convert small ditch (2 MG) as needed

Secondary Treatment Evaluation

• Used BioWin model to estimate volumes based on anticipated future effluent limits:

Parameter	Anticipated Future Effluent Limits		
Farameter	Near Term	Future	
TSS (mg/L)	12	12	
CBOD ₅ (mg/L)	9 summer / 10 winter	9 summer / 10 winter	
NH ₃ (mg/L)	1 summer / 3 winter	1	
TP	1 (above 12 MGD)	1	
TN	-	5 summer / 10 winter	

Environmental Engineers & Scient

Secondary Treatment Alternatives

- Considered two alternatives:
 - Existing + new oxidation ditches + additional reactors
 - New conventional activated sludge (CAS) aeration basins
- Estimated construction costs:
 - 15 MGD, summer nit. CAS approx. 2X OD
 - 18 MGD, year-round nit., bio P CAS approx. 1.5X OD
 - 18 MGD, BNR CAS approx. 1.25X OD

Wet Weather Management / Secondary Treatment Evaluation

- EQ / secondary treatment combined costs:
 - 15 MGD, summer nit. approx. same
 - 18 MGD, BNR CAS < OD
- Selected CAS with conversion of OD to flow EQ
 - Accommodate wet weather flow management (step feed)
 - Additional redundancy (multiple basins)
 - More easily expandable in future for nutrient limits

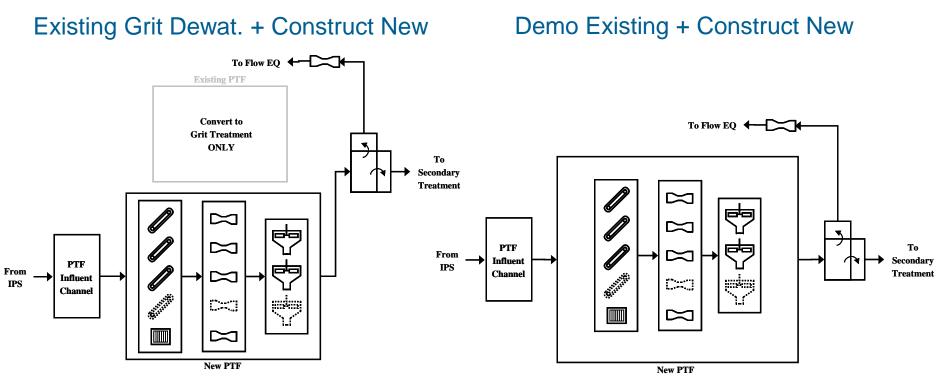
Influent Pumping

- Limited capacity (32 MGD total), pump maintenance concerns
- Options to increase influent pumping capacity:
 - Rehab existing pump station + construct small new pump station
 - Demo existing pump station + construct large new pump station
- Size influent pumping firm capacity to match projected peak influent flows (70 MGD, expandable to 100 MGD)

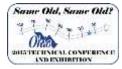
Influent Pumping

Rehab Existing + Construct New Demo Existing + Construct New Trenton Trenton Incoming **Pump Station Pump Station** Sewer \bigcirc (\bigcirc) \bigcirc PTF Additional PTF Sewer **Existing IPS** Influent Influent for Future Ø Channel Channel Capacity õ 0 Incoming 0 × Sewer 0 Ó O 0 Õ New IPS New IPS

 Similar estimated construction costs – demo existing / construct new selected based on site constraints


Preliminary Treatment

- Options to increase screening and grit removal capacity:
 - Construct new screening and grit removal facility + use existing facility for grit dewatering
 - Demo existing structure and construct new screening and grit removal facility
- Size screening/grit removal capacity to match projected peak influent flows (70 MGD, expandable to 100 MGD)

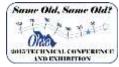


Preliminary Treatment

 Similar estimated construction costs – demo existing / construct new selected based on site constraints

Final Clarifiers and RAS Pumping

- Clarifier stress testing
 - Addition of EDI and density baffles recommended to improve performance
- Other improvements needed:
 - Improved scum removal
 - Additional clarifiers for increased secondary capacity
 - Increased RAS pumping capacity and redundancy



Phased Improvements

- Phase 1 more immediate needs (smaller project)
- Phase 2
 - Increase capacity from 12 MGD to 15 MGD
 - Increase wet weather capacity from 32 MGD to 70 MGD
 - 5 MG flow EQ
 - Accommodate future expansion
- Future
 - 18 MGD capacity
 - 100 MGD wet weather capacity
 - 2 MG additional flow EQ if needed
 - Biological nutrient removal if needed

Phase 1 Improvements

- Completed in 2009
- Addition of second centrifuge
- New vactor unloading and septage receiving stations
- RBC train removed
 - More space for vehicles and material storage

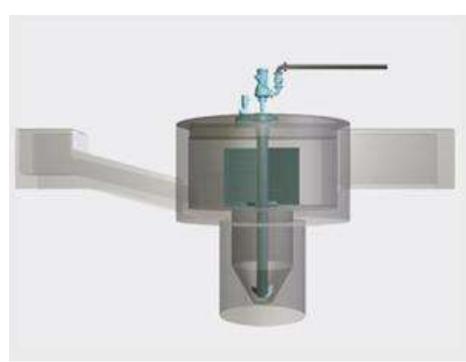
Phase 2 Improvements

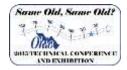
- In operation in 2014
- New Influent Pump Station (submersible)
- New Preliminary Treatment Facility
- Convert Oxidation Ditches to Flow EQ
- New Aeration Basins and Blower Building
- New Final Clarifier, Replace Existing Mechanisms
- Expand RAS Pump Station

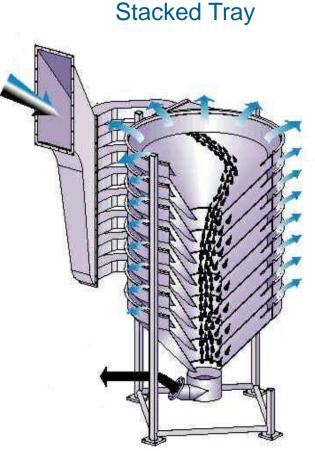
Screenings Removal Alternatives

- Traveling Rake
 - Similar to previous mechanical bar screen (Parkson Aquaguard)
 - Less removal than perforated plate
 - Less headloss
- Perforated Plate
 - New type of screen to plant staff
 - Greater removal than traveling rake
 - Greater headloss
- Selected perforated plate screens due to increased screenings removal

Grit Removal Alternatives


- Grit sampling performed to assess particle sizes and quantities
 - Approx 30% < 300 micron</p>
 - Approx 10% < 150 micron</p>
- Considered two types of grit removal basins: stirred vortex and stacked tray
 - Similar footprint, similar estimated construction cost
 - Selected stacked tray for increased grit removal




Grit Removal Alternatives

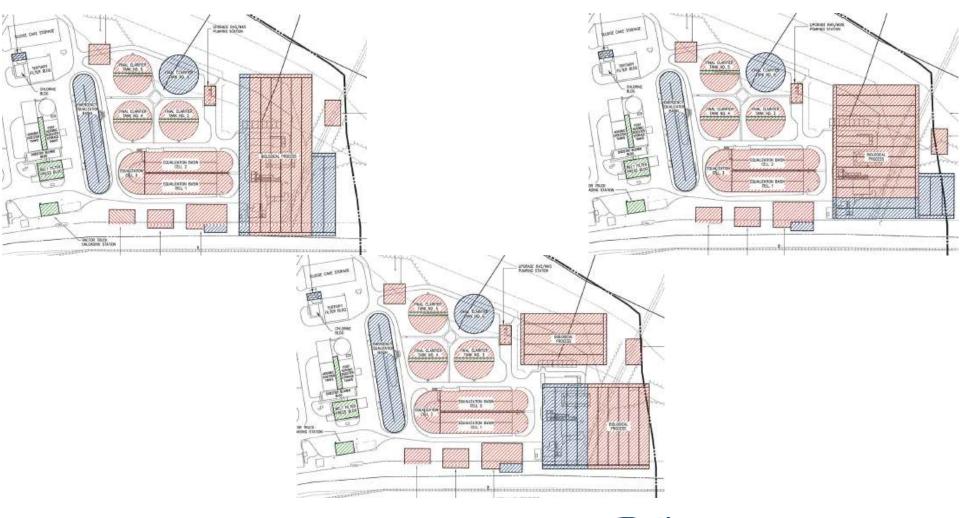
Stirred Vortex

Courtesy: Smith & Loveless

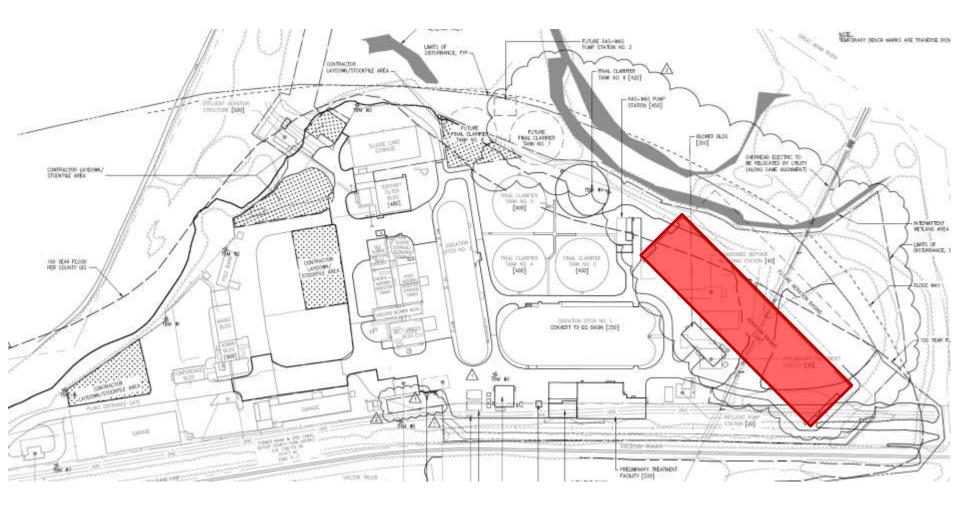
Courtesy: Hydro International

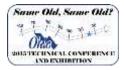
EQ Basin Aeration / Washdown Alternatives

- Aeration alternatives considered:
 - Floating aerators
 - Blowers / coarse bubble diffusers
 - Jet aeration
 - Floating aerators selected (lower cost)
- Washdown alternatives considered:
 - Water cannons
 - Tipping buckets
 - Flushing gates
 - Water cannons selected (lower cost, greater flexibility)



Aeration Basin Layout Alternatives





Aeration Basin Selected Layout



Aeration Basin Diffuser Alternatives

• Evaluated multiple types of fine bubble membrane diffusers:

Discs

Tubes

Panels

• Selected discs (lowest overall net present worth)

Aeration Basin Blower Alternatives

- Evaluated multiple types of blowers:
 - Multi-stage centrifugal
 - Integrally geared single-stage centrifugal
 - High speed direct drive centrifugal
- Selected high speed direct drive blowers (air foil bearing) based on reduced maintenance and operating range

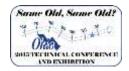
Final Clarifiers and RAS Pumping

- Clarifiers:
 - New clarifier, rehab existing
 - Sludge scraper mechanisms to match existing config.
 - Full radius scum removal
 - Energy dissipating inlet and density baffles to improve flocculation and settling
- RAS pumps:
 - New pumps one per clarifier plus standby
 - Expand existing pump station structure to reduce construction cost

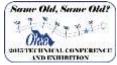
Overall Objectives

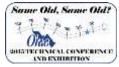
- Increased dry weather and wet weather capacity
 - Influent pumping
 - Screening and grit removal
 - Flow EQ
 - Biological treatment
 - Clarifiers and RAS pumping
- Increased redundancy and reliability
- Accommodate future expansion, effluent limits
- Reuse existing facilities / infrastructure where possible to reduce cost

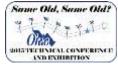
HAZEN AND SAWYER



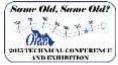
HAZEN AND SAWYER

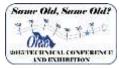


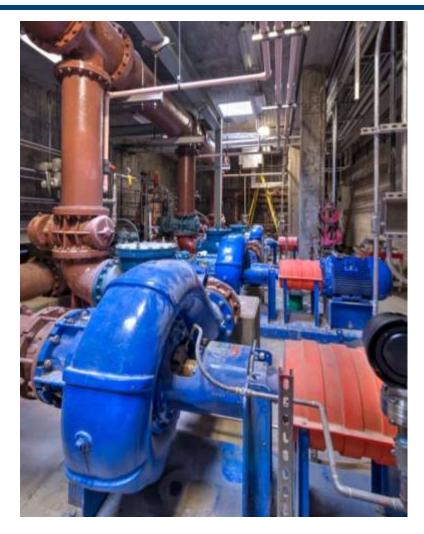




HAZEN AND SAWYER Environmental Engineers & Scientists







Acknowledgements

- Butler County Water and Sewer Department
 - Steve Seitz, PE Chief Engineer
 - Todd Madden Chief Operator
 - LeSourdsville WRF Operations and Maintenance Staff
- Hazen and Sawyer Team

Questions?

- Tony Farina
 - (513) 469-2750
 - tfarina@hazenandsawyer.com

