

## Corrosion Condition Assessments of Force Mains

James T Lary Corrpro 1055 W Smith Road Medina, OH 44256 Tel: 330-723-5082 (x1215) Email: JLary@corrpro.com



Corrpro. All Rights Reserved.



**Corrosion Process** 

### Internal & External Corrosion of Force Mains....



# 24" Ductile Iron Force Main





- Internal failure following loss of internal mortar lining
- Failure was along top of pipe due to formation of hydrogen sulfide gas



# **Dual 26" Force Mains**





- Internal failures at bottom of pipe
- Failure following loss of internal mortar lining
- Failures concentrated at low areas (dips) in pipeline alignment
- Cause is corrosion under accumulated solids



# 36" Above Ground Crossing

- Failure of force main at above ground crossing
- Crown of pipe attacked by hydrogen sulfide gas





# **External Corrosion**



- Caused by Aggressive soil conditions
- Galvanic Corrosion
- Stray DC Currents











## **External Corrosion Attack**





Actual size of AWWA Specification Thickness Reductions

for 36-inch Diameter Cast and Ductile Iron Pipe - 1908 to Present

(150 PSI Operating pressure)

# Cast Iron Pipe (thicker walled pipe)









© Corrpro. All Rights Reserved.







External pitting (concentrated) corrosion attack on thinner walled ductile iron pipe.

# **Temporary Fix ?**





- The rate and magnitude of corrosion depends on a number of factors:
  - Pipe Material and Characteristics
  - Operating Conditions
  - Construction Methods
  - Environment (age not a good primary metric)
  - Internal or External Corrosion Attack

### **Pipeline Condition Assessment Process**

- Initial development driven by federally regulated pipeline integrity rules
- Methodology also quite applicable to water / wastewater



### #1 Pre-Assessment:

- Define pipe segments by construction contracts and similar characteristics, e.g. material, construction practices
- Identify specific locations along the pipeline
  - Air Release Points/Man ways
  - Pipeline crossings
  - Known area where piping failures have occurred



### #1 -Pre-Assessment Data Gathering & Planning:

- "Good listening" operating history, criticality, consequences of failure
- Leak & Repair Records
- Pipe "Bone Yard"
- Coordination of Condition Assessment Efforts With Other Activities
  - Excavations
  - Repairs



- Project construction drawings and specifications
- Pipe materials and characteristics
  - Wall thickness
  - Pressure rating
  - Flow Rates
  - Air Release points/operational status
  - Coatings and Linings
- Bedding and backfill material
- As-built documentation
- Soil corrosivity, e.g. resistivity, pH, chlorides, moisture
- Adjacent utilities and crossings
- Sources of stray current corrosion
  - Nearby cathodic protection systems
  - Direct current powered transit systems
  - High voltage overhead AC power lines



#### **Indirect Inspection techniques:**

- In-Situ Soil Resistivity Measurements
- Soil Sample Collection and Analysis
- Ultrasonic Thickness Measurements (if applicable)
- Direct Examination of Exposed Pipe Sections
- Stray Current Evaluations









# **#2 - Indirect Inspection:**

- Integrate all data along pipeline alignment
- Analyze Data and Rank Indications:
  - Severe
  - Moderate
  - Minor
- Select at sites for direct inspection locations should be where corrosion activity is most likely
- Select control site where corrosion activity is the least likely

# #3 - Direct Examination

- Excavating the pipe
- Performing physical inspection & photograph
- Evaluating integrity of coating/wrap, if present
- Testing the pipe surface, e.g. corrosion pitting
- UT measurements
- Measuring dimensions of corrosion defects
- Analyzing surrounding soil
  / groundwater
- Performing root cause analysis









#### **Force Main Pipeline Inspection Report**

|                 | isp  | ect | or name Date Address of pipeline inspection Leak? Yes No File Number:                                                                                                                                          |
|-----------------|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |      |     | f Pipe: cast iron ductile iron carbon steel copper carbon steel non metallic concreteother                                                                                                                     |
| -               |      |     | ter of pipe Pipeline Name Service Type: Water Wastewater Estimated date of pipe installation Depth of pipe                                                                                                     |
|                 |      |     | f Pipe: Distribution Transmission Service Hydrant Mechanical joint Fasteners Other Unknown                                                                                                                     |
| 4) <sup>.</sup> | Гур  | e o | f Coating: Polyethylene Encased Shop applied coating No Coating Tape Wrap Unable to determine                                                                                                                  |
| 5)              | xte  | ern | al Pipe Condition: Very Good Good Poor comments:                                                                                                                                                               |
| 6)              | Jitr | asc | nic Thickness Measurements and comment Internal Lining Present YesNo comment                                                                                                                                   |
| 6) I            | s c  | orr | osion pitting evident? Yes No Number of Pits Typical Size of Pits Quantity of pits:                                                                                                                            |
| 7)              | s g  | rap | hitization evident (longitudinal or circumferential breaks)Yes No                                                                                                                                              |
| 8)              | s tł |     | pipe installed in (check off appropriate items): Industrial area Residential area Rural area Near street or road<br>lear creek or waterway In reclaimed land Near oil or gas pipelines Near high voltage lines |
| 8)              | Des  | cri | be soil conditions where inspection occurred: wet dry clay soil rocky soil cinders other                                                                                                                       |
| 9) \            | ٧h   | ere | soil samples obtained, sealed and analyzed for chlorides, moisture content, pH, sulfides, resistivity? If yes results were:                                                                                    |
| 10)             | We   | re  | previous repairs made on the pipeline (leak clamps, etc) Yes No Was new pipe installed Yes No.                                                                                                                 |
| 11)             | Wa   | s a | repair clamp installed on the pipe during inspection Yes No                                                                                                                                                    |
| 12)             | Wa   | s a | galvanic anode installed as part of the inspection process? Yes No, if yes size and quantity                                                                                                                   |
| 13)             | Ple  | ase | e relay additional comments:                                                                                                                                                                                   |
|                 |      | -   |                                                                                                                                                                                                                |
|                 |      |     |                                                                                                                                                                                                                |
| 14)             | Pla  | n o | f Action                                                                                                                                                                                                       |
| 15)             | Ins  | ert | digital photos below:                                                                                                                                                                                          |
|                 |      |     |                                                                                                                                                                                                                |
|                 |      |     |                                                                                                                                                                                                                |
|                 |      |     |                                                                                                                                                                                                                |
|                 |      |     |                                                                                                                                                                                                                |
|                 |      | '   |                                                                                                                                                                                                                |



### <u>#3 - Direct</u> <u>Examination:</u>

- When corrosion is found, perform a root cause analysis
- Implement localized corrosion protection
- Install instrumented test station for future assessment of corrosion activity, e.g. corrosion rate probes









# #4 – Post Assessment:

- Calculate remaining life
  - Pit growth rate and wall thickness
  - Internal or External Corrosion
  - Coupons
  - Electrical resistance (ER) probes
- Maximize benefit by
  - Capture ideas for improvement
  - Determine need/timeframe for update evaluations
  - Identify corrective action options





## #4 – Post Assessment Recommendations:

- Identify Corrective Options
  - Operational Procedures
  - Treatment Practices
  - Internal Lining
  - Cathodic Protection
  - Stray Current Mitigation
  - Pipeline Replacement
  - Pipeline Monitoring







#### **Program for Existing Mains** Break Reduction Life Extension Through Cathodic Protection





**Cathodic Protection of Metallic Fitting** 

# Meter Vaults



### (Keep dry if possible)



#### Impressed Current CP System on Oil/Gas Lines can Create Stray Current Problem on Water Lines





- Effective management of force mains pipeline includes understanding and managing the risk of corrosion
- A systematic approach to condition assessments results in the most value at the lowest cost
- Retrofitting with accepted industry practice such as internal linings, treatment programs, operational adjustments, or cathodic protection may be a cost effective options for extending the life of existing mains
- A key asset management strategy is to include suitable corrosion control in the design of new force mains



#### Other Structures













# **Prioritizing Distribution Systems**



#### **Program for Existing Mains** Break Reduction Life Extension Through Cathodic Protection

#### **Anode Installation**





# **Copper Service Connections**









## **Stray Current**







### **Polyethylene Encasement of Ductile Iron Pipe**





-Follow DIPRA installation procedures -Clean pipe before installing polywrap -Repair tears or damage to encasement -Engage an inspector to oversee installation









© Corrpro. All Rights Reserved.

#### Repair of Break Should Include Anode Installation







#### **Completed Repair**



#### **Polyethylene Encasement of Ductile Iron Pipe**





-Follow DIPRA installation procedures -Clean pipe before installing polywrap -Repair tears or damage to encasement -Engage an inspector to oversee installation



## Force Main Recommendations

- Use coatings and cathodic protection for external corrosion control of steel and ductile iron pipe
- Replace pipe at failure sites with PVC, HDPE or fiberglass
- For long sections of deteriorated pipe, replace with PVC, HDPE or fiberglass, or, internally line with cured in place polyester resin (CIPP)
- Where metallic piping must be used, line with ceramic epoxy.







## **Anode Installed on Metallic Fitting**





# <del>USIUH ASSESS</del>M







#### Effectiveness of Well Designed Corrosion Management Programs



#### Value of Well Designed Corrosion Management Programs

## **Benefit to Cost Ratios (\$ saved/ \$ spent):**

```
City of Houston, TX8Marin Water District, CA9East Bay MUD, CA - All Facilities7East Bay MUD, CA - Steel Pipelines24Chicago Area Utility25
```



### **Existing Force Mains:**



 Internal Corrosion is likely the leading cause of main breaks

External Corrosion may also be a factor



#### #2 – Indirect Inspection: Non-Invasive Over-the-Line Techniques









## Existing Force Mains: Condition Assessment

...need to cost effectively understand and manage pipeline condition and operational risk...





#### <u>The four fundamental elements of a successful</u> coating system involve:

- 1. Material Selection
- 2. Specification
- 3. Application
- 4. Inspection





## **Technologies**

- Material Selection
- Protective Coatings
- Cathodic Protection
- Stray DC Current Control
- AC Interference Mitigation









- Multiple failures at Buffalo Bayou on bottom of pipe
- Performed ultrasonic thickness measurements in lift station
- Cases of failure are scouring and turbulent flow





#### **Force Main Corrosion Mechanisms**





## 30" Ductile Iron





- Internal corrosion failure at crown of pipe.
- Hydrogen sulfide gas formed sulfuric acid which attacked the mortar coating and then the underlying metal surface.

## H<sub>2</sub>S & Silt Accumulation May Cause Internal Corrosion Problem....



## **Piping Inspection Phases**

- 1. Identification of Problem or High Consequence Areas
- 2. Field Study/Inspection

3. Post Assessment/Identify Corrective Options









#### Accurate leak records are an invaluable predictive tool



#### **#2 – Indirect Inspection:**

Data Integration for Non-Invasive Over-the-Line Techniques



## **#2 - Indirect Inspection:**

 Available decision-assisting tools, among others:
 DDM<sup>TM</sup> - Risk-based "Design Decision Model"
 MTCF<sup>SM</sup> - "Mean Time To Corrosion Failure" Predictive Model



## #3 - Direct Examination:

- Excavating the pipe
- Performing physical inspection
- Evaluating integrity of coating/wrap, if present
- Ultrasonic Testing of the pipe surface
- Measuring dimensions of corrosion defects
- Analyzing surrounding soil / groundwater
- Obtain coupon
- Performing root cause











- Internal pipe failures along crown of pipe
- Failures following loss of internal mortar lining
- Cause is formation of hydrogen sulfide gas





## **#3 - Direct Examination:**

Procedures for data collection

- Physical Examination
- Photographic Documentation
- Pipe-to-Soil Potential Measurements
- Bi-metallic Connections, e.g. services
- Soil, Bedding, Backfill and Groundwater Tests
- Coating Assessment (if applicable)
- Mapping and Measurement of Corrosion Defects
- Ultrasonic Thickness Measurements
- AC and DC Stray Current Measurements

