

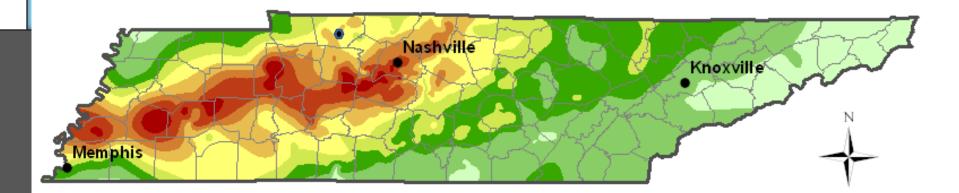
2011 OWEA Annual Conference June 22, 2011

When Disaster Strikes

Dan Miklos, Senior Associate, Midwest Region

HAZEN AND SAWYER Environmental Engineers & Scientists

Agenda

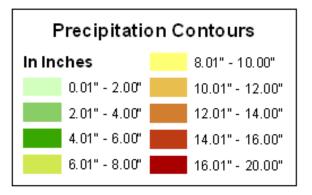

• The Flood of 2010

- Disaster provides an opportunity to re-think earlier decisions
- Correcting long term design problems
- Dewatering, Biosolids Processing and Disposal are changed
- Existing Sludge Processing and Disposal
 - Sludge Conditioning and High Pressure Pumping.
 - Plate and Frame Presses with Drag Chain Conveyance to RDP Class A Processing
 - RDP Processing to Class A Biosolids
- Current full scale pilot testing
 - Centrifuge
 - Belt Press
- Low technology solutions for long term disposal.

The Clarksville Flood of 2010

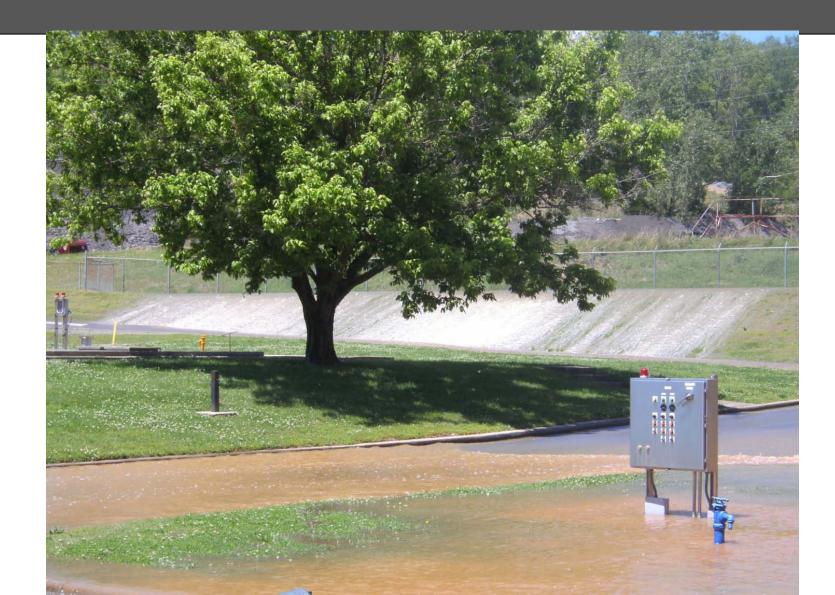
- Characterized as "far greater" than a 1,000 year rain event - 36 hours of rain totaled 17 inches on May 1 and May 2, 2010. 26 fatalities on May 2, 2010.
- BP Deepwater Horizon Oil Rig explosion and oil spill on April 20, 2010 kept the nation's attention.
- The Army Corps of Engineers released 1.4B gallons of water in 1 hour to save upstream dams.
- The Clarksville WWTP was flooded and remained under water for approximately 6 days.
- Severe damage with prolonged submergence as opposed to a storm surge that quickly recedes. Every cable and conductor had to be removed.

Weekend Rainfall Totals - May 1st & 2nd, 2010 Tennessee


Source: CoCoRaHS

This map is an interpolation of actual reported values, but should be considered an estimation only.

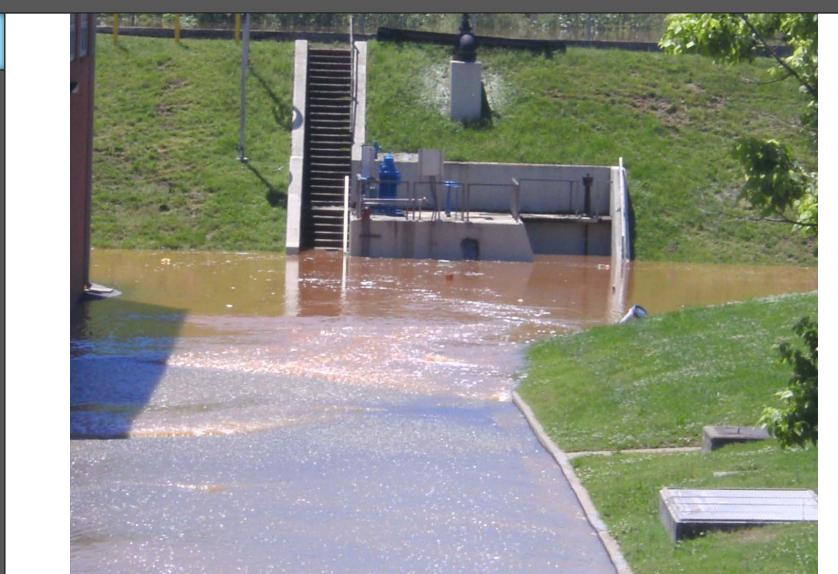
Created by the National Weather Service Forecast Offices Nashville, Tennessee & Louisville, Kentucky


City of Clarksville, TN 1,000 Year Flood Recovery Team

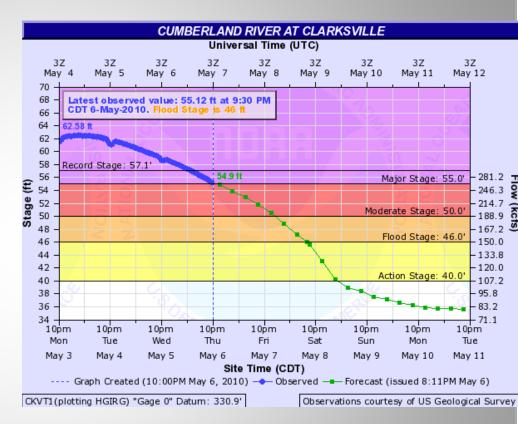
- <u>Hazen and Sawyer</u>, Project Management
- <u>Allied Technical Services</u>, Sharonville, OH, Site Dewatering, Underwater Services, Equipment repair/replacement
- MSD Equipment, Centerville, OH, Sludge Dewatering
- <u>Shermco Industries</u>, Dallas Texas, Electrical Contracting
 - Aggreko: Generators, dehumidification, air handling
 - Belfor: Property restoration/cleaning

Clarksville, TN: May 1, 2010, Cumberland and Red River Confluence

Flood Breach-North Levy 5/3/2010


Low Point-South End of Plant 5/3/2010

Site Drainage To Plants Stormwater Pump Station 5/3/2010



Stormwater Pump Station Too Much Flow! 5/3/2010

Initial Recovery Timeline

- Event: May 1-2
- WWTP Site Flooded: May 3
- River Crest: May 4
- Emergency response contractor hired (pumps, generators, manpower, electrician, etc.): May 4
- Site dewatered: May 5-9
- Primary Treatment restored: May 12
- Electrical Contractor Selected: May 14
- Temporary dewatering company selected: May 15
- Electrical contractor began work: May 15
- Site cleaning and disinfection contractor began work: May 16
- Temporary solids dewatering belt press onsite: May 21

NPDES Permit...Water Quality!

- Immediate communication with TDEC HQ and field office
- Daily written report to TDEC concerning flood recovery progress
- All floodwater from site disinfected and pumped through GeoTube
- All wastewater effluent disinfected prior to discharge (bulk hypochlorite)
- Primary Treatment: Wednesday, May 12 (3 days after site dewatered)
- Secondary Treatment: August (over 3 months after site dewatering complete) Turblex blowers, air system, diffusers, AB tanks, power, etc...

Deep Thoughts...FEMA

- Waterline matters...
- Keep lines of communication open.
- Define "emergency condition" and purchasing requirements associated with the emergency.
- But...the story can change...get it in writing
- Define Project Worksheet "projects" early.
- Don't build in a COE flowage easement.
- Levee?
- More to come.

Clarksville, TN: Clarksville WWTP Following Levee Breach

Clarksville WWTP: Solids Handling Facility

Administration Building Roof Lifted Tuesday 5/4/2010

Administration Building Wednesday 5/5/2010

Clarksville WWTP: Solids Handling Facility May 6, 2010

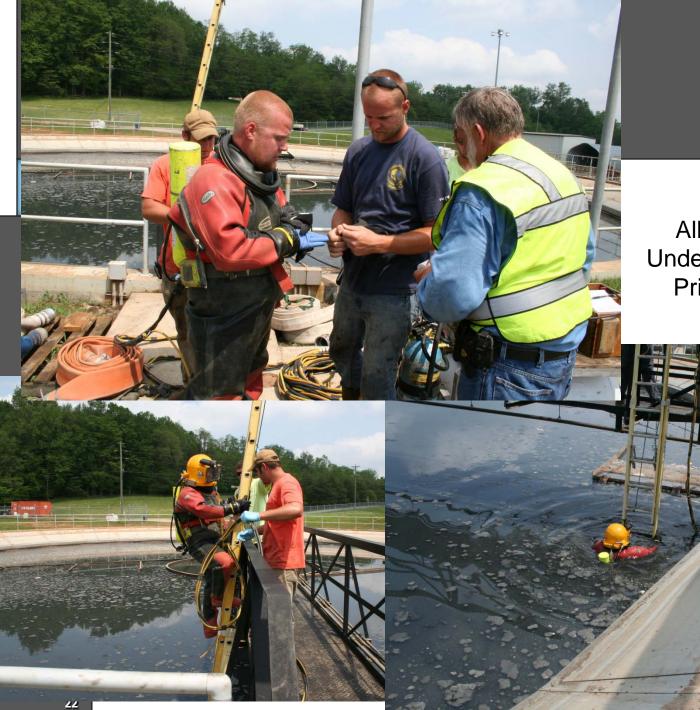
LEND DETER

Clarksville WWTP: Solids Handling Facility May 7, 2010

18

Clarksville WWTP: Solids Handling Facility May 8, 2010

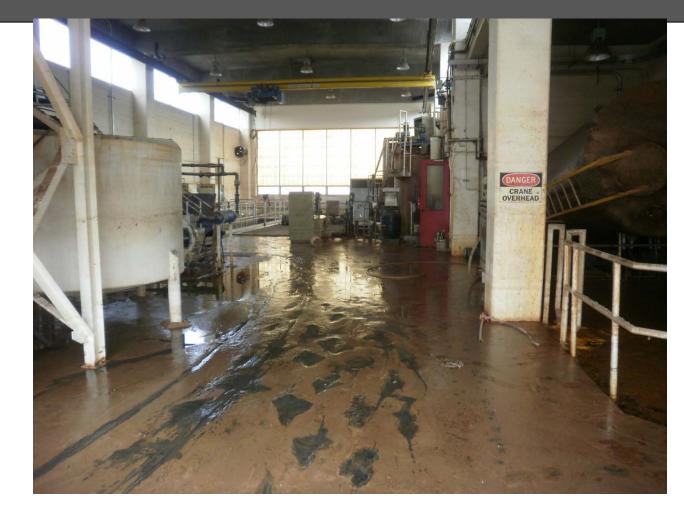
Clarksville WWTP: Solids Handling Facility May 9, 2010



Administration Building Saturday 5/8/2010

Flood Recovery Begins All Site Dewatering to GeoTube Silt Bags


Allied Technical **Underwater Services Primary Settling**


Refrigerators Can Float 5/9/2010

Aeration Tanks Area Dewatering 5/7/2010

Sludge Conditioning Building "Mud" and "Sludge" 5/12/2010

Site Dewatering 5/8/2010

Clari-Vac Systems In Secondary Clarifiers Floated Out of Tanks 5/9/2010

Clari-Vac Systems Floated Out of Tanks 5/18/2010

RECOVERY... a daunting task!

Flood Recovery Begins: Competing for Resources Temp. Generators and Pumps Arrive 5/7/2010

Flood Recovery Begins Generators and Dehumidifiers Arrive 5/15/2010

Cleaning Crews Mobilize 5/16/2010

Building Interiors Vacuumed 5/27/2010

Temporary Belt Press 5/27/2010

125 Contractors On-site: Daily coordination changes!Cleaning, Mech. & Elec. Repairs5/27/2010

All Electrical Wire Removed and Salvaged 6/18/2010

Clari-Vac Systems Repaired 7/28/2010

New Clari-Vac LCP's 7/29/2010

Turblex Blowers Refurbished New LCPs. Motors Rewound 7/29/2010

Aeration Basins Diffuser Replacement Tank No. 1 8/2/2010

Belt Thickener Building Ashbrook GBT's Refurbished 8/3/2010

Belt Thickener Building Ashbrook GBT's Refurbished 8/21/2010

Temporary Mobile Substation 8/21/2010

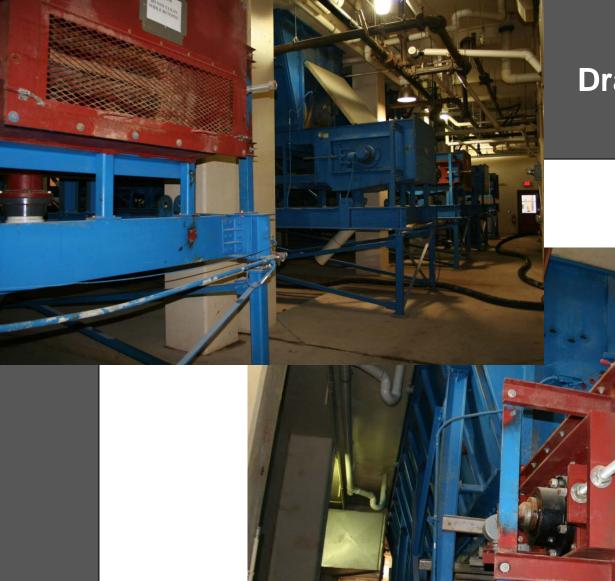
Effluent Pump Station New VFD's for 5 Effluent Pumps 8/21/2010

Secondary Settling Tanks 5 through 9 Commissioning Completed 8/30/2010

Aeration Basins Diffuser Replacement Tank No. 1 Complete 8/31/2010

New MCC Primary Sludge Building 10/28/2010

New MCC Belt Thickener Building 2/18/2011



Clarksville Solids Processing

- Three (3) Structures / Processes:
 - Sludge Conditioning and High Pressure Pumping.
 - Plate and Frame Presses with Drag Chain Conveyance to RDP Class A Processing
 - RDP Processing to Class A Biosolids
- Hazen and Sawyer recommended the City reconsider their sludge processing selection. The flood enabled the City to evaluate earlier decisions regarding capital investment in dewatering and Class A Processing.
- FEMA and flood insurance enabled the City to provide for re-investment with a change in technology approach.

Plate and Frame Presses

Drag Chain Conveyors

NOT CLEAT

Pug Mill Operation with Post Lime Treatment for Class A Processing

Long Sweep Conveyors for Loading Station

Loading Station

Existing Sludge Processing Equipment: connected hp

	connected hp	Number	total hp
Grinder Pumps	3	2	6
Mixer Pit	1.5	1	1.5
Odor control	2	2	4
Lime feed tank mixer	15	1	15
Silo screw conveyor	5	1	5
Transfer screw conveyor	5	1	5
Lime Hose Pump	10	3	30
Ferric Pump	2	1	2
RDP Sludge Storage Mixer	1	2	2
Press Feed Pumps	25	5	125
Air Compressor	30	2	60
Drag chain conveyor	25	5	125
Transfer Screws	25	5	125
Sludge Lime Mixers	25	3	75
Pug mill	25	3	75
Cross Belt Plow	15	2	30
Cross Conveyors	5	2	10
Intermediate Conveyor	5	2	10
Shuttle Conveyor	2	2	4
Shuttle Trolley	2	2	4
Vibrator	1.32	3	3.96
Long sweep conveyor	25	2	<u>50</u>
		total hp	767.5

Sludge Processing Operating Costs:

Power:	total hp hrs	37,323	
	hp/kw	1.34	
	\$/kwhr	\$0.08	
	total power cost	\$2,152 <i>\$/week</i>	

Chemistry:			
Lime Feed	Pressings/wk	lbs/pressing	
Lime Feed (1,000 lbs for Press)	51	1,000	51,000 <i>lb/week</i>
Lime Feed (1,200 lbs for Class A	A) 51	1,200	<u>61,200</u> lb/week
		total lime	112,200 <i>lb/week</i>
	Lime Cost/ton		<u>\$168</u> \$/ton
		lime cost	\$9,425 <i>\$/week</i>
Ferric Chloride (100 gals/press') 51	100	5,100 gallons
Ferric Chloride Cost/lb			\$0.127
Ferric Chloride Specific Gravity			<u>1.41</u>
		ferric cost	\$7,617 <i>\$/week</i>

Sludge Processing Operating Costs:

Labor:

Operating hours/week for staffing	55 hrs	
Press Room Operators	2	
Control Room Operator (Pug mill)	1	
Truck and Front Loader	0.5	
	192.5 manhours/wk	
2	\$15.50 hourly rate	
	1.42 benefits rate	
	total labor cost	\$4,237 <i>\$/week</i>

Maintenance and Disposal Costs: \$2,000 \$/week

- Significant annual costs:
 - Drag chain conveyors at \$140,000 per unit. One unit under repair when work stopped due to flood.
 - New plate and frame press @ \$1.3M installed
 - Chemical feed, smaller conveyance systems, high pressure pumping all contributed to significant maintenance costs.
 - City was required to haul solids land application sites.

Sludge Conditioning Building Temporary piping/grinders and flow metering

Pug Mill Building Long Sweep Conveyors and Loading Station Removed

Frac Tank Blending Flottweg Centrifuge BDP Belt Press

BDP 3 Belt Press MSD Equipment

Pug Mill Building

30 cyd Roll Off – BP and Centrifuge Loading

Future Sludge Processing Equipment: connected hp

	connected		total
Two Presses	hp	Number	hp
Drive	5	2	10
Wash water	15	2	30
Gravity Section	2	2	4
Feedbox	0.5	2	1
Hydraulic System	3	2	6
Feed pump	20	2	<u>40</u>
		total hp	91

Power:	total hrs/wk	66	
	total hp hrs	6,006	
	hp/kw	1.34	
	\$/kwhr	\$0.08	
	total power	\$346 <i>\$/week</i>	

|--|

\$1,648 <i>\$/week</i>
\$329.50cost/day
\$17.50cost/dry ton
7 lbs/dry ton
0.36
\$0.90lb

Labor:

Ρ

1
0.5
99 manhours/wk
\$15.50 hourly rate
1.42 benefits rate
\$2,179 <i>\$/week</i>

Maintenance and Transportation Costs:

- Significant annual costs:
 - Example is landfill transportation and tipping fee (next slide)
 - In comparison, minimal maintenance anticipated.
 - Class B land application would require future land acquisition and cake storage for fecal reduction.

Projected Cost of Operation (landfill disposal)@ 9.5 MGD

Dumpster Charge (tipping and transportation) Projected primary and waste sludge cake Projected dry lbs (primary & secondary) Projected wet lbs (primary & secondary) cake Cake solids weight/cf Projected Wet Volume to disposal Projected Wet Volume to disposal dumpster volume dumpsters/day disposal cost at landfill

\$194.40 30 cyd dumpster 22.0% 37,657 dry lbs/day 171,170 wet lbs/day 60 lbs/cf 2,853 cf/day 106 cyd/day 30 cy 3.5 \$3,243 \$/week

Plate and Frame/Class A	ne/Class A versus Belt Press/Class B		
	P&F/Class A	BP/Class B	
Dewatering			
Power	\$2,152	\$346	
Chemistry	\$17,041	\$1,648	
Labor	\$4,237	\$2,179	
Maintenance/Disposal	<u>\$2,000</u>	<u>\$3,423</u>	
total weekly cost	\$25,430	\$7 , 596	
total annual cost	\$1,322,360	\$394,992	

- 1. Do not underestimate capital equipment decisions and the momentum or direction that provides to a utility.
 - Capital investment reduces options as capitalization and the resulting debt service leaves less room in the budget. The City of Clarksville is not comfortable further impact debt service and limit future options by remaining a "Class A processing facility".

2. The first decision: abandon plate and frame presses:

- Two (2) dewatering methods are being considered: Belt Press and Centrifuge. Full scale pilot units are being tested.
 - Flottweg Z5E with a 20.8 inch bowl
 - BDP 1 meter 3 belt
 - Lime addition for dewatering is **not** an option:

- Re-tool for long term biosolids disposal. Key issues for a successful venture: (con't)
 - 1. Site is land locked within the levee. Biosolids processing would limit the site for additional wet stream treatment.
 - 2. Sludge storage and processing must be located off-site. The City is committed to eliminating long standing odor problems at the facility with new upgrades throughout the facility.
 - 3. Minimize capital investment at the site to maintain "debt service options" off site. Class A capitalization showed no return on investment (ROI).
 - 4. Develop a more efficient and cost effective dewatering option as a starting point for long term disposal options. Further solids stabilization at the facility would occupy limited wet stream processing area and complicate an odor sensitive facility.

- 4. Evaluate the paradigm shift in the organization. Biosolids disposal commitment can range from:
 - minimal staff investment/commitment landfill cake solids without further processing.
 - Increase staff investment/commitment by increasing material handling capability to achieve a more cost effective disposal option. Consider low technology / low capital alternatives:
 - Remote sludge storage for Class B compliance and land application
 - Remote sludge storage for cost effective access to area farms
 - Invest in farm purchase to incorporate disposal and crop rotation with surrounding farms.
 - Minimize sludge volume and handling requirements. Class A processing showed little return on investment. Class A processing averaged approximately 45% of the total disposal requirement.

5.

- "Class A" versus "Class B" is one of the few times that the selection and process design are based on factors that are outside the fence.
 - Beneficial use of biosolids is our goal, but the City has a responsibility to the rate payers to minimize cost.
 - Class A versus Class B needs to be a team decision with client ownership – it is not the design engineer's decision.
- Effective dewatering is critical to any downstream processing.
 Optimize not only the dewatering process/equipment but also solids conditioning (or plan to eliminate it).
- There is no right or wrong answer, but the successful decision must have ownership throughout the Utility

Operations staff return to normal duties

Questions???

