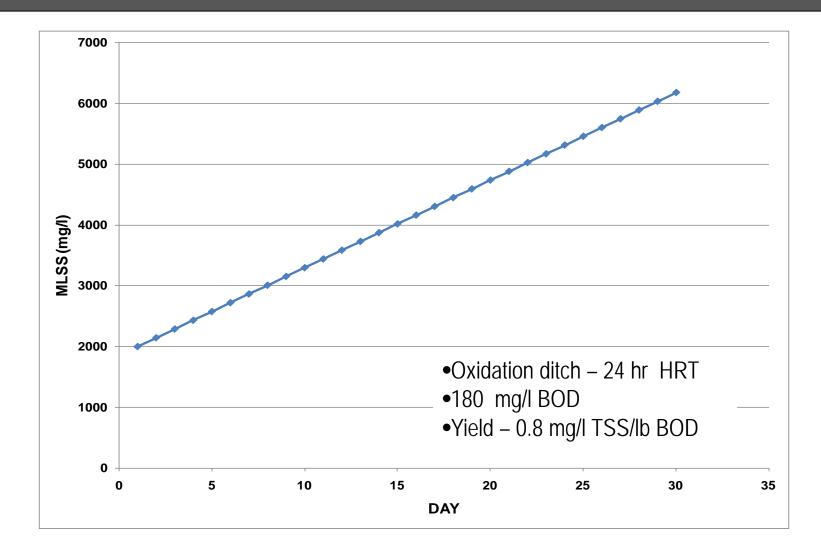
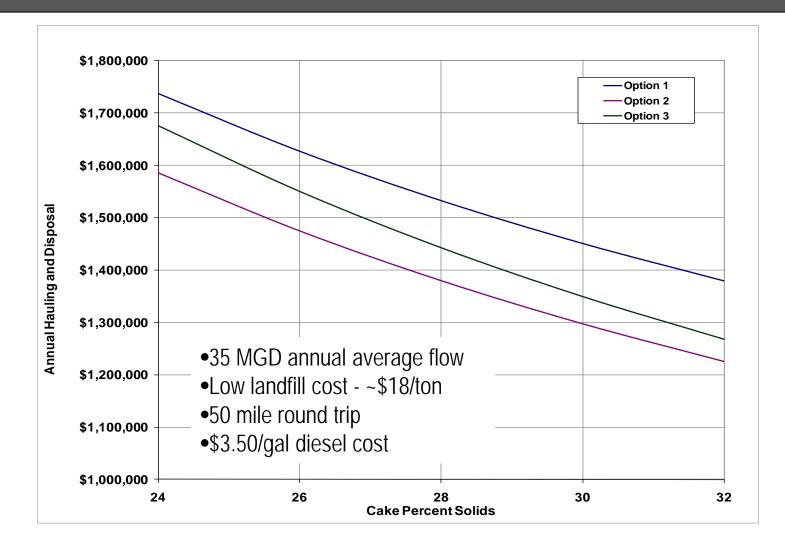
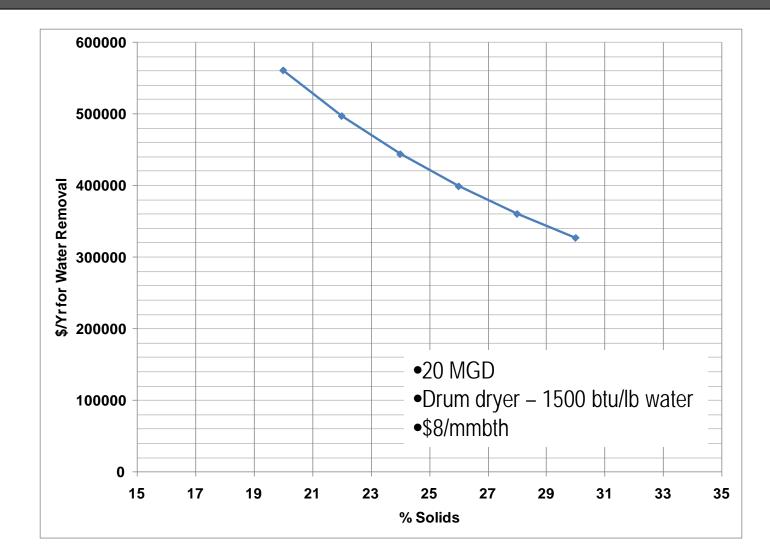


Press or Spin? Dewatering Case Studies

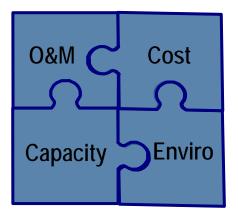

OWEA State Conference Steven Reese, PE June 22, 2011


Presentation Overview

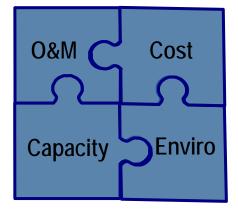
- A Reminder of Importance
- Factors for Consideration
- Case 1: Plate vs Belt or Centrifuge
- Case 2: Belt vs Rotary or Screw
- Wrap Up


If you can't treat solids.....

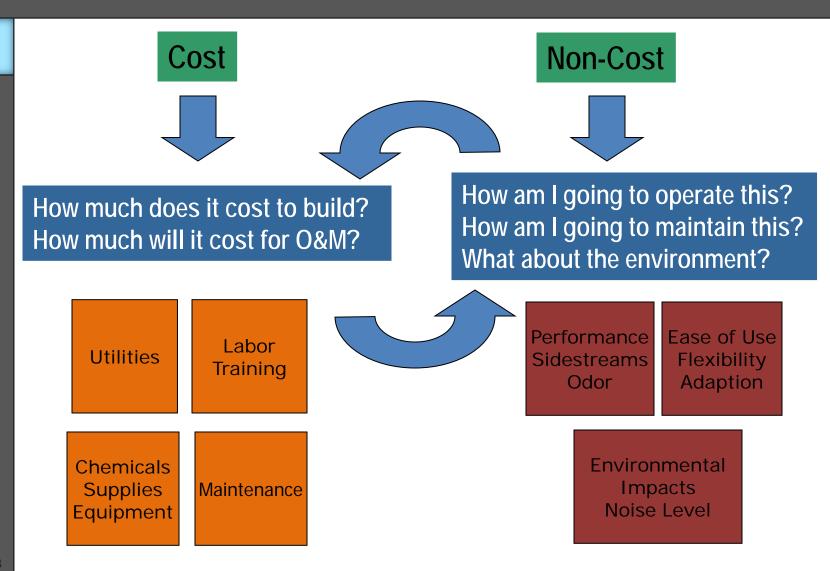
Disposal



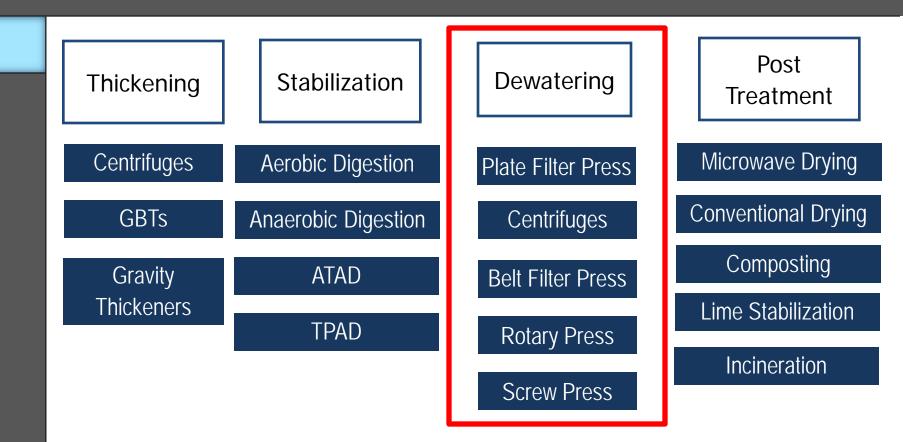
Downstream?....Drying


Dewatering Considerations

- Require relatively large capital investment
 Site constraints / available space
- Substantial share of annual O&M budget
 - Chemical addition
 - Wash water
 - Electricity
 - Labor



Dewatering Considerations


- Dewaterability (sludge characteristics)
- Consider impacts on treatment train
 - Sidestream treatment
 - Odor control
 - Future capacity / adaptability
- End-use
 - Further treatment
 - Disposal requirements

Different Viewpoints

Dewatering Technologies

Case 1: Plate vs Belt or Centrifuge

- 25 MGD plant
- Previously 5 plate and frame presses
- Previous solids operations
 - Lime and ferric pretreatment
 - Lime stabilized (Class A) after dewatering
 - Land application haul/give to local farmers
- New solids operations
 - No stabilization (blended primary + WAS)
 - Landfill disposal

Previous Processing Equipment

	connected hp	Number	total hp
Grinder Pumps	3	2	6
Mixer Pit	1.5	1	1.5
Odor control	2	2	4
Lime feed tank mixer	15	1	15
Silo screw conveyor	5	1	5
Transfer screw conveyor	5	1	5
Lime Hose Pump	10	3	30
Ferric Pump	2	1	2
RDP Sludge Storage Mixer	1	2	2
Press Feed Pumps	25	5	125
Air Compressor	30	2	60
Drag chain conveyor	25	5	125
Transfer Screws	25	5	125
Sludge Lime Mixers	25	3	75
Pug mill	25	3	75
Cross Belt Plow	15	2	30
Cross Conveyors	5	2	10
Intermediate Conveyor	5	2	10
Shuttle Conveyor	2	2	4
Shuttle Trolley	2	2	4
Vibrator	1.32	3	3.96
Long sweep conveyor	25	2	<u>50</u>
		total hp	767.5

Previous Processing Cost

Power:	total hp hrs	37,323	
	hp/kw	1.34	
	\$/kwhr	\$0.08	
	total power cost	\$2,152 <i>\$/week</i>	

Chemistry:			
Lime Feed	Pressings/wk	lbs/pressing	
Lime Feed (1,000 lbs for Press)	51	1,000	51,000 <i>lb/week</i>
Lime Feed (1,200 lbs for Class A)	51	1,200	<u>61,200</u> <i>lb/week</i>
		total lime	112,200 <i>lb/week</i>
	Lime Cost/ton		<u>\$168</u> \$/ton
		lime cost	\$9,425 <i>\$/week</i>
Ferric Chloride (100 gals/press')	51	100	5,100 gallons
Ferric Chloride Cost/lb			\$0.127
Ferric Chloride Specific Gravity			<u>1.41</u>
		ferric cost	\$7,617 <i>\$/week</i>

Previous Processing Cost (Cont.)

Labor:

55 hrs	
2	
1	
0.5	
192.5 manhours/wk	
\$15.50 hourly rate	
1.42 benefits rate	
total labor cost	\$4,237 <i>\$/week</i>
	2 1 0.5 192.5 manhours/wk 515.50 hourly rate 1.42 benefits rate

Maintenance and Disposal Costs: \$2,000 \$/week

- Significant annual costs:
 - Drag chain conveyors at \$140,000 per unit.
 - New plate and frame press @ \$1.3M installed
 - Chemical feed, smaller conveyance systems, high pressure pumping all contributed to significant maintenance costs

New Equipment Parameters

- Belt Filter Press (2m)
 - Max hydraulic loading = 200 gpm
 - Max solids loading = 2220 lb/hr
 - Typical Avg Cake Solids = 21%
- Centrifuge (21" bowl)
 - Max hydraulic loading = 300 gpm
 - Max solids loading = 3330 lb/hr
 - Typical Avg Cake Solids = 25%

New Processing Equipment

Two Presses	connected hp	Number	total hp
Drive	5	2	10
Wash water	15	2	30
Gravity Section	2	2	4
Feedbox	0.5	2	1
Hydraulic System	3	2	6
Feed pump	20	2	<u>40</u>
		total hp	91

Fraction of previousOver 700 hp

New Processing Cost

Power:	total hrs/wk	66	
	total hp hrs	6,006	
	hp/kw	1.34	
	\$/kwhr	\$0.08	
	total power	\$346 <i>\$/week</i>	

Chemistry:	

emulsion polymer cost	\$0.90lb
activity	0.36
assume 7 lbs active polymer / dt	7 lbs/dry ton
* high charge, high wt, large branch	
Polymer usage / dry ton	\$17.50cost/dry ton
emulsion polymer cost/day	\$329.50cost/day

Polymer cost \$1,648\$/week

New Processing Cost (Cont.)

Labor:

Ρ

ress Room Operators	1
Operator for Loading	0.5
	99 manhours/wk
	\$15.50 hourly rate
	1.42 benefits rate
Total labor	\$2,179 <i>\$/week</i>

Maintenance and Transportation Costs: \$3,423 \$/week

- Significant annual costs:
 - Example is landfill transportation and tipping fee (next slide)
 - In comparison, minimal maintenance anticipated

New Processing Cost (Cont.)

Projected Cost of Operation (landfill disposal)

Dumpster Charge (tipping and transportation) Projected primary and waste sludge cake Projected dry lbs (primary & secondary) Projected wet lbs (primary & secondary) cake Cake solids weight/cf Projected Wet Volume to disposal Projected Wet Volume to disposal dumpster volume dumpsters/day disposal cost at landfill \$194.40 30 cyd dumpster 22.0% 37,657 dry lbs/day 171,170 wet lbs/day 60 lbs/cf 2,853 cf/day 106 cyd/day 30 cy 3.5 \$3,402 \$/week

Processing Cost Comparison

ersus Belt Pre	ss/Class B
P&F/Class A	BP/Class B
\$2,152	\$346
\$17,041	\$1,648
\$4,237	\$2,179
<u>\$2,000</u>	<u>\$3,423</u>
\$25,430 \$1,322,360	\$7,596 \$394,992
	\$2,152 \$17,041 \$4,237 \$2,000 \$25,430

- Replace plate and frame presses
- Move to Class B operations

New Equipment Comparison

	Belt Filter Press	Centri	ifuge
	5 x 15	5 x 15	5 x 15
Total Present Worth	\$14.8M	\$15.6M	\$14.7M
Average Annual Cost	\$1.53M	\$1.63M	\$1.51M
	R	1	7

- 10 year present worth
 3330 lb/hr
 2220 lb/hr
- Present worth cost overlap
- Increase importance of non cost factors

BFP vs Centrifuge

Belt Filter Press	Centrifuge
Slightly lower capital cost	Smaller / lighter equipment
Less power	Greater capacity is possible
Typically slightly less polymer	Less odors / splashing
Lower maintenance cost	Lower disposal costs (higher cake solids)
Will require longer oper hours, digestion, or bldg expansion	Slightly lower O&M and NPW costs
Can view dewatering on belt	

Full scale pilot units are still under evaluation

Case 2: Belt vs Screw or Rotary

Previous solids operations

- Oxidation ditch to aerobic digestion
- Contracted belt press dewatering
- Contracted storage and land application
- New solids operations
 - Oxidation ditch to aerobic digestion
 - Onsite dewatering
 - Contracted storage and land application

Design Criteria

	1.3 MGD Current	4.0 MGD Future
Feed Solids Concentrations (TS)	2%	2%
Dewatered Solids (TS)	15%	15%
Percent Solids Capture (TS)	95%	95%
Volume (gallons / minute)	65	80
Mass Loading (dry lbs TS / hour)	660	810

- 25 year present worth comparison
 - Contracted belt press
 - Onsite rotary press
 - Onsite screw press

Factors for Comparisons

Contracted Belt Press

Advantages		Disadvantages		
•	Current Operation / familiarity	•	Cost for contract	
•	On-call operation	•	Equipment Lead Times	
•	No Capital / Maintenance			

Onsite Screw or Rotary Press

Advantages	Disadvantages
Small Footprint	In-house labor requirements
Lower Utility Cost	Pilot to Verify Performance
Lower Capital Cost	
Lower Maintenance	

Contracted Belt Press

- On-call mobile service
- \$0.03 / gallon
- Only increase for cost of inflation
- No capital cost
- No maintenance cost
- No labor cost

Rotary Press

Consumables/Fees	Cost
Polymer Use	15 active pounds / dry ton
Normal Connected HP	7 HP
Hours of Maintenance / Day	1 hr / day
Days of Operation / Week	2 Days (Current) / 5 Days (Future)
Labor Rate for Operation	\$36.00 / hr
Hours a Week for Labor	2 hrs (Current) / 5 hrs (Future)
Yearly Increase in Labor and Chemicals	2%
Maintenance Cost (% of Capital Cost)	2%

Screw Press

Consumables/Fees	Cost
Polymer Use	15 active pounds / dry ton
Normal Connected HP	13 HP
Hours of Maintenance / Day	1 hr / day
Days of Operation / Week	2 Days (Current) / 5 Days (Future)
Labor Rate for Operation	\$36.00 / hr
Hours a Week for Labor	4 hrs (Current) / 10 hrs (Future)
Yearly Increase in Labor and Chemicals	2%
Maintenance Cost (% of Capital Cost)	2%

Present Worth Summary

Dewatering Alternatives	Capital Present Worth (\$MM)	Average Annual O&M Cost	O&M Present Worth (\$MM)	Total Present Worth (\$MM)
Contracted Press	\$0.00	\$186,000	\$2.25	\$2.25
Rotary Press	\$1.19	\$57,000	\$0.74	\$1.93
Screw Press	\$2.22	\$92,000	\$1.21	\$3.43

- Cost evaluation solely would recommend rotary
- Pilot testing was performed for rotary and screw

Pilot Results

	Rotary Press	Screw Press
Cake Solids, %	13%	19%
Power Consumption, HP	7	10
Equipment Capital Cost	\$300,000	\$408,000
Polymer Usage, Active lbs / Dry Ton	11	19
Installation Cost	\$950,000	\$1,160,000
O&M Cost / Year	\$63,500	\$61,100
Solids Capacity, Dry PPH	400	900
Hydraulic Capacity, gpm	80	90

- Pilot updated assumptions from PW study
- Owner allowed more automation
- Increased hours of operation (unmanned)

Pilot Results (Cont.)

- Screw press selected
- Owner's comfort level
- Benefits
 - Fewer units to maintain
 - Unmanned operation
 - Drier cake solids
 - Higher unit capacity
 - Operations flexibility for current and future

Summary and Wrap-up

- Effective dewatering is critical to any downstream processing
- Considerations for dewatering
 - Includes responsibility to rate payers
 - Ownership throughout utility
 - Pilot testing proves capability
- Press or Spin?
 - Owner and site specifics rule the day
 - Team decision considers the pros and cons

sreese@hazenandsawyer.com